

 Page 1

EOPEN
opEn interOperable Platform for unified access and analysis of Earth

observatioN data

H2020-776019

D5.3

Linked Open EO Data

Dissemination level: Public

Contractual date of delivery: Month 33, 31/07/2020

Actual date of delivery: Month 34, 21/08/2020

Workpackage: WP5 Semantic representation and the EOPEN ontology

Task: T5.2 Linked open EO data
T5.3 Reasoning for decision support

Type: Demonstrator

Approval Status: Approved

Version: 1.0

Number of pages: 60

Filename: D5.3-Linked Open EO Data v1.0rc1.docx

 Page 2

Abstract

This deliverable describes the result of the work performed in the EOPEN project to provide Linked
Open Earth Observation Data to application developers and users. The document starts with
providing the relevant technical requirements extracted from D6.1 which have been used to drive
the work. Then a short introduction to the Linked Data concepts, tools and technologies is provided,
including the ontologies that are used afterwards to represent EO products metadata as Linked Data.

The report then describes the outcome of the activity including the EO data for which conversion
rules have been defined, the processes and workflows that have been implemented, as well as the
graphical components that may be used to search for and visualise the data in the EOPEN User
Portal.

The document continues with explaining the potential of using Linked EO and non-EO data to bring
advanced features to the EOPEN Pilot Use Cases before concluding and providing a way forward.

The mapping rules used to convert EO products metadata into Linked Data are provided in Appendix.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

This project has received funding from the European Union's Horizon 2020 research and
innovation program under grant agreement 776019

D5.3 – V1.0

Page 3

History

Version Date Reason Revised by Approved By

0.1 07/07/2020 Initial Draft - TOC Georgios Meditskos
Maria Rousi
Ilias Gialampoukidis
(CERTH)

0.10 13/08/2020 Internal Review
(partial document)

Gabriella Scarpino
(Serco)

0.14 18/08/2020 Internal Review Hakim Boulahya
(SpaceApps)

0.15 20/08/2020 Internal Review Stelios Andreadis
(CERTH)

Ilias
Gialampoukidis
(CERTH)

1.0 21/08/2020 Updated document
after review

Ready for submission

 Leslie Gale
(SpaceApps)

Author list

Organization Name Contact Information

SpaceApps Bernard Valentin bernard.valentin@spaceapplications.com

mailto:bernard.valentin@spaceapplications.com

D5.3 – V1.0

Page 4

Executive Summary

In this deliverable we are describing the work performed in the EOPEN project for providing
Linked Open Earth Observation Data (T5.2) to application developers and users as well as the
tools for generating new Linked EO Data as necessary.

The Linked Data related concepts and techniques have already been introduced in D5.1 and
their application to non-EO data in the context of the EOPEN Pilot Use Cases described in
D5.2. The present deliverable focuses on the conversion, storage and use (including querying
and visualisation) of EO products metadata that are openly and freely available.

The document shortly introduces Linked Data concepts and standards and refers to D5.1 and
D5.2 when applicable. The software tools used in T5.2 are described. These in particular
have permitted to generate, store, retrieve and visualise Linked EO Data.

The work accomplished in T5.2 and described in this document includes the following:

 The open Earth Observation data used in the EOPEN Pilot Use Cases has been
identified. This consists in the Sentinel records harvested and served through a
service API by the "Umbrella Application of Sentinel Hub" (KR10, see D3.1 "EO Data
Acquisition from the Collaborative Ground Segment and Quality Control").

 Services required to convert and store the Linked Data have been deployed in the
backend of the EOPEN Platform.

 Processes and workflows have been implemented and configured to generate, store,
and provide a search interface to the Linked Data.

 Graphical components have been implemented to allow searching for and visualising
Linked Data in the EOPEN User Portal.

As the result of this work has not been formally integrated in the EOPEN PUCs, the report
provides ideas on how the Linked EO Data, combined with Linked non-EO Data (D5.2) can
potentially be used in the use cases.

The mapping rules used to convert the EO products metadata obtained from the Umbrella
Application to Linked Data are provided in Appendix A.

D5.3 – V1.0

Page 5

Abbreviations and Acronyms

AOI Area Of Interest

API Application Programming Interface

BBOX Bounding Box

CLI Command-Line Interface

CSV Comma Separated Values

DBMS DataBase Management System

EO Earth Observation

GDB Graph Database

GML Geography Markup Language

GRD Ground Range Detected

GUI Graphical User Interface

IW Interferometric Wide (SAR swath mode)

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

KB Knowledge Base

KML Keyhole Markup Language

KMZ Keyhole Markup Language (Compressed)

LOD Linked Open Data

NKUA National and Kapodistrian University of Athens

O&M Observation and Measurements

OGC Open Geospatial Consortium

OPT Optical

OWL Web Ontology Language

R2RML RDB to RDF Mapping Language

RDF Resource Description Framework

REST Representational state transfer

RML RDF Mapping Language

SAR Synthetic Aperture Radar

SPARQL SPARQL Protocol and RDF Query Language

TOI Time Of Interest

TTL Turtle

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WKT Well-Known Text

XML eXtensible Markup Language

YAML Yet Another Markup Language

D5.3 – V1.0

Page 6

Table of Contents

1 INTRODUCTION ... 9

2 RELEVANT REQUIREMENTS .. 11

3 LINKED OPEN EO DATA .. 12

3.1 Introduction .. 12

3.2 Tools and Technologies .. 12
3.2.1 Linked Data and RDF Graphs.. 12
3.2.2 Graph Databases .. 13
3.2.3 SPARQL and GeoSPARQL ... 13
3.2.4 R2RML and RML ... 15
3.2.5 GeoTriples .. 15
3.2.6 Strabon ... 17
3.2.7 GraphDB ... 17

3.3 Applicable Ontologies .. 17

4 LINKED OPEN EO DATA IN THE EOPEN PLATFORM ... 20

4.1 Available Earth Observation Data .. 20

4.2 Services ... 23
4.2.1 Umbrella Application of Sentinel Hubs .. 23
4.2.2 GraphDB ... 23
4.2.3 Strabon ... 23

4.3 Processes... 23
4.3.1 Any to RDF Converter .. 24
4.3.2 Store in Strabon ... 25
4.3.3 Query Strabon .. 26
4.3.4 Query GraphDB .. 27
4.3.5 Query RDF File .. 27
4.3.6 RDF Merger .. 28

4.4 Workflows ... 28
4.4.1 EO Products Metadata Conversion to Linked Data and Storage in Strabon 28
4.4.2 Interoperable semantic query to retrieve EO and non-EO data .. 41

4.5 Visualisation of RDF Graphs and SPARQL Results.. 45
4.5.1 Visualisation of RDF Graphs ... 45
4.5.2 RDF Graphs with Spatio-Temporal Dimensions ... 47
4.5.3 Generic SPARQL Results Table ... 48

5 POSSIBLE USES .. 50

D5.3 – V1.0

Page 7

6 CONCLUSIONS ... 51

7 REFERENCES .. 52

APPENDIX A. MAPPING DEFINITIONS ... 54

A.1. Sentinel-1 (SAR) Product Metadata Mapping Definition (RML) 54

A.2. Quicklook Object Properties Mapping Definition (RML).. 59

List of Figures and Tables

Figure 1 – Linked Open EO Data Components Architecture (T5.2) ... 9

Figure 2 – The Architecture of GeoTriples ... 16

Figure 3 – EO Product (Dataset) Linked Data Model ... 19

Figure 4 – "Any to RDF Converter" Process in the Workflow Editor.. 25

Figure 5 – "Any to RDF Converter" Process Parameterisation Form 25

Figure 6 – "Convert to RDF and Store in Strabon" Workflow in Workflow Editor 26

Figure 7 – "Convert to RDF and Store in Strabon" Workflow Parameterisation Form 26

Figure 8 – Linked Data Conversion and Storage Workflow ... 30

Figure 9 – Linked Data Conversion and Storage Workflow Parameterisation Form 31

Figure 10 – Linked Data Generation and Storage Workflow Execution Report (Fragment) ... 41

Figure 11 – EO and non-EO Linked Data Query Workflow .. 42

Figure 12 – EO and non-EO Linked Data Query Parameters .. 43

Figure 13 – Linked Data Generation and Storage Workflow Execution Report (Fragment) ... 43

Figure 14 – SPARQL Results Document of Merged Linked Data (Fragment) 44

Figure 15 – Social Media Communities Graph (source: D6.5) ... 45

Figure 16 – EO and non-EO Entities Graph .. 46

Figure 17 – Linked EO Data Browser showing a Landsat-8 Dataset Series 47

Figure 18 – Geo-localised Linked EO and non-EO Data in a Dashboard Component 48

Figure 19 – Visualisation of SPARQL Results in the EOPEN User Portal................................... 49

D5.3 – V1.0

Page 8

Table 1 – Example GeoSPARQL SELECT Query ... 14

Table 2 – GeoTriples Command-Line Instructions (Fragments) ... 16

Table 3 - Example Umbrella Application query and response ... 21

Table 4 – Namespaces and Prefixes ... 32

Table 5 – Dataset Object Metadata Mapping Rules .. 32

Table 6 – Dataset Phenomenon Time Mapping Rules ... 34

Table 7 – Dataset Process Object (O&M EarthObservationEquipment) Mapping Rules 35

Table 8 – Dataset Platform Object Mapping Rules .. 36

Table 9 – Dataset Instrument Object Mapping Rules .. 37

Table 10 – Dataset Result Object Mapping Rules .. 37

Table 11 – Dataset Media Content Object Mapping Rules .. 38

Table 12 – Dataset Quicklook Content Object Mapping Rules .. 38

Table 13 – Dataset Quicklook Category Object Mapping Rules... 39

Table 14 – Generated Linked EO Data (Fragment) .. 39

Table 15 – Sentinel-1 Product Mapping Rules ... 54

Table 16 – Quicklook Objects Mapping Rules .. 59

D5.3 – V1.0

Page 9

1 INTRODUCTION

As described in D5.2, the overall scope of WP5 is "creating the appropriate semantic
knowledge structures to map the information coming from different components of the
EOPEN project." D5.2 lists the non-EO data sources that are used to constantly update the
Knowledge Base integrated in the EOPEN Platform.

This document extends this list of data sources in adding EO data coming from the Umbrella
Application of Sentinel Hub (KR10).

The architecture used to search for EO products metadata, convert these metadata into
Linked Data, store this Linked Data into a Knowledge Base, where it becomes available for
semantic querying, reasoning and visualisation is depicted in Figure 1.

Figure 1 – Linked Open EO Data Components Architecture (T5.2)

The architecture components are as follows:

 The EO products metadata source is the Umbrella Application, as described in
section 4.1.

 The transformation of the EO products metadata into Linked Data is performed using
GeoTriples (section 3.2.5), configured with mapping rules expressed in RML
(section 4.4.1.2). This is implemented in a generic, re-usable workflow process
(section 4.3.1). The implemented mapping rules are provided in Appendix A.

 The generated Linked Data is stored in Strabon, a free and open-source graph
database implemented by NKUA (section 3.2.6). Two dedicated processes have been
implemented for storing and querying Linked Data in Strabon (sections 4.3.2
and 4.3.3).

 Other processes have been implemented which allows querying non-EO Linked Data
from GraphDB and merge two or more Linked Data graphs (sections 4.3.4 and 4.3.6).

 Retrieved Linked Data graphs or search results may be visualised in the EOPEN User
Portal using the appropriate graphical components (section 4.5).

In addition, the processes mentioned above have been integrated into workflows to provide
two applications that may be invoked on-demand. The first application is used to extract
EO data from the Umbrella Application service, transform it into Linked Data, and store the

D5.3 – V1.0

Page 10

Linked Data into Strabon (section 4.4.1). The second application searches for Linked EO Data
in Strabon and Linked (non-EO) Data in GraphDB (see D5.2), merges the outputs and
provides the merged results to graphical components for visualisation (section 4.4.2).

The work accomplished and reported in this deliverable covers the Research Activity 4.2
(RA4.2) "Linking of open EO data" described in the Grant Agreement.

D5.3 – V1.0

Page 11

2 RELEVANT REQUIREMENTS

All three releases of Deliverable 6.1 describe the technical specifications, including the
System and the Application Requirements, as stemming from D2.1 and D2.2, and foreseen in
the GA, in addition to the Architectural Design of the EOPEN Platform. Some of the technical
specifications apply to the way Linked Data must be supported in the EOPEN Platform.

The needs and requirements that apply to Linked Data have been reproduced here. As can
be seen, no requirements explicitly apply to Linked Earth Observation Data. The work
performed in WP Task 5.2 has thus mainly been driven by more generic requirements.

D6.1 organises the requirements for the EOPEN Platform extensions into logical modules.
One module specifically applies to Linked Data:

EOPEN must include a module capable of ingesting and managing linked data

This module named "Knowledge / Linked Data Management" implements Key Results KR08
"EOPEN ontology and reasoning support framework", covered by D 5.1 and D5.2, and KR09
"Linking Open EO data module", covered by this document.

The module has the following technical requirements:

Ref. Statement

1.1 The module must be able to access the semantic knowledge structures and vocabularies
needed to capture information and data pertinent to EOPEN

1.2 The module must be able to access to a triple store (KB)

1.3 The module must be able to populate the KB with analysis results

1.4 The module must be able to enable general purpose rule-based reasoning

1.5
(not EO)

The module must be able to determine the location of social media content based on text
analysis results

1.6 The module must be able to process incoming queries and semantically retrieve data from
the KB

1.7 The module must be able to provide the necessary Web interfaces (Web APIs) for other
modules to invoke specific functions

Except requirement 5, all the statements can apply to Earth Observation data.

Next to the above, the Visualisation module (KR14) also includes an applicable requirement:

Ref. Statement

2.1 The EOPEN Platform WebUI must be able to display linked data in a structured manner

In the course of the EOPEN project, processes and services have been implemented and
deployed. Test workflows have been configured and executed to demonstrate the potential
uses of the technology.

D5.3 – V1.0

Page 12

3 LINKED OPEN EO DATA

3.1 Introduction

The general motivation for using Linked Data is to facilitate the discovery and retrieval of
heterogeneous data sets distributed in different locations, possibly maintained by different
providers. Linked Data is generic enough to permit encoding information of different sources
and nature, including the metadata of EO products. Linked Open EO Data focuses exclusively
on the encoding of the metadata of EO products that are publicly and freely available.

The adoption of common structures and concepts, organised in ontologies, allows querying
several data sources and merging the results in a seamless manner. The results from the
different sources are automatically linked through the shared concepts.

Moreover, the merged results may be further analysed to discover new links between the
elements retrieved from different sources. As an example, an "event" entity associated to a
geographical location and an occurrence time may be linked to the satellite images that
cover the same location at (almost) the same time.

Interlinked data can be navigated through by following the links for discovering the
information incrementally in an intuitive manner. Graph structures may also be analysed as
a whole, for example to discover clusters and isolated nodes or group of nodes. Complex
queries can be executed to filter on specific link and node types and property values.

The Resource Description Framework (RDF), which is used to organise the Linked Data,
encodes the nodes and the (directed) links as triples, where the source is referred to as the
Subject, the link is the Predicate, and the destination the Object. Collections of triples are
stored in so-called triplestores, or graph databases (GDB). And the SPARQL query language
allows expressing search, extraction, modification, and deletion requests supported by these
databases.

When serialized in a file, an RDF graph is encoded in one of the several formats
recommended by the W3C, including RDF/XML, RDF/JSON, N3, Turtle, and N-Triples.

Section 3.2 presents shortly the Linked Data tools and technologies as most of these have
already been introduced with more details in D5.1 or D5.2.

Section 3.3 presents the ontologies available for organising EO products metadata and
indicates which options have been selected to add support for Linked open EO Data in the
EOPEN Platform.

3.2 Tools and Technologies

3.2.1 Linked Data and RDF Graphs

Linked Data is a method for publishing structured data in a manner that element of
information may be typed and interconnected. The structure and the element types should
be created according to links and concepts specified in re-usable public ontologies. Different
graphs created independently but complying with the same ontologies and controlled
vocabularies may be connected and queried.

D5.3 – V1.0

Page 13

Resource Description Framework (RDF) is a framework for representing information on the
Web. It is described in a series of W3C specifications and recommendations. RDF is the
technology behind Linked Data.

The latest version, RDF 1.1, has been adopted by the W3C in 2014.

RDF was considered as a complex standard mostly due to its XML-based serialisation
RDF/XML. More serialisation formats, easier to read and author have been defined, such as
Turtle and N-triples.

The syntaxes that have been defined to serialize RDF data include the following:

• RDF/XML: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

• RDF/JSON: http://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

• Turtle: http://www.w3.org/TR/2014/REC-turtle-20140225/

• N-Triples: http://www.w3.org/TR/2014/REC-n-triples-20140225/

Read more about the RDF 1.1 recommendations in the official W3C "Primer" document:
https://www.w3.org/TR/rdf11-primer/.

Available serialisation formats are used to import and export Linked Data into and from
graph databases. As there is a clear separation between the RDF framework, the data model
and its serialisation formats, the format may usually be selected by the developer depending
on project specific constraints or personal preferences.

3.2.2 Graph Databases

Graph Databases (GDB) are databases which use graph structures to organise the data and
allow applying semantic queries over the edges, nodes and their properties. Nodes can be
seen as rows in a table in a Relational Database Management System (RDBMS) and edges as
directed or not directed relations between these tables. Representing data in graphs allows,
by applying a dedicated query language, to retrieve all the edges, nodes and their properties
matching search criteria and obtaining sub-graphs or result lists.

Deliverable D5.2 provides a more detailed introduction to Graph Databases as well as a
comparison with Relational Databases. It also reports that the main disadvantages of using
graph databases are associated with the lack of security and maturity level, which is not as
high with relational databases. Their main advantage is their flexibility.

3.2.3 SPARQL and GeoSPARQL

SPARQL [5] is a declarative language recommended by the W3C for extracting and updating
information in RDF graphs. It is an expressive language that allows the description of quite
complex relations among entities. GeoSPARQL [14] is an Implementation Specification (IS) of
the OGC which extends the SPARQL language with the geospatial dimension.

SPARQL may be used to insert, search, update and delete data in a graph database.

When searching for data, it is important to distinguish between two options:

• SPARQL SELECT queries allow, similarly to traditional RDBMS SQL SELECT statements,
to search for matching entries and obtain data organised in a flat table. The SELECT
statement allows specifying the filter criteria as well as identifying the values to

http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2013/NOTE-rdf-json-20131107/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/rdf11-primer/

D5.3 – V1.0

Page 14

include in the responses. Each set of values can thus be compared to a record in a
database table. It is only possible to re-build a graph using the result of a SPARQL
SELECT query if the selected values match exactly the subject, predicate and object of
triples existing in the database. But this is a particular case and it is not how
sub-graphs should be extracted from a triplestore. SPARQL CONSTRUCT queries must be
used for that. Outputs of SPARQL SELECT queries are suitable for visualisation in a
tabular form (see section 4.5.3)

• SPARQL CONSTRUCT queries allow extracting sub-graphs from a graph database. As the
result is a graph itself, it can be imported in another database, merged and interlinked
with other RDF graphs, and further queried with other SPARQL statements. Outputs
may be visualised as interactive networks of nodes and links, or graph browsers, for
example (see section 4.5.1).

Using CONSTRUCT queries, it is also possible to define SPARQL rules that can create
new RDF data, combining existing RDF graphs into larger ones. Such rules are defined
in terms of a CONSTRUCT and a WHERE clause: the former defines the graph patterns, i.e.
the set of triple patterns that should be added to the underlying RDF graph upon the
successful pattern matching of the graphs in the WHERE clause.

GeoSPARQL adds support for a spatial dimension. It provides the means to search for graph
entries by applying functions and filters on their geometry (e.g. an image footprint, an event
location). Dedicated functions allow applying transformations to geometries such as
extending or shrinking an area with a buffer distance, calculating the distance between two
geometries, calculating the union, intersection or difference between two geometries.
Filters allow verifying, for example, if two geometries intersect, overlap, or are disjoint.

Table 1 shows an example GeoSPARQL query that searches for RDF graph entries of type
"dcat:Dataset", whose geometry overlaps the polygon "POLYGON((22 40, 23 40, 23 41, 22
41, 22 40))" (expressed in WKT), and having start/end time properties on "2020-01-25":

Table 1 – Example GeoSPARQL SELECT Query

PREFIX dcat: <http://www.w3.org/ns/dcat#>

PREFIX ical: <http://www.w3.org/2002/12/cal/ical#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

PREFIX eop: <http://www.opengis.net/eop/2.1#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX epsg: <http://www.opengis.net/def/crs/EPSG/0/>

SELECT DISTINCT ?Id ?Start ?End ?Geometry ?Direction

 ?Orbit_Number ?Polarization ?Mission

WHERE {

 ?s a dcat:Dataset ;

 ical:dtstart ?Start ;

 ical:dtend ?End ;

 dct:spatial ?Geometry ;

 dct:identifier ?Id ;

 eop:pass_direction ?Direction ;

 eop:orbit_number ?Orbit_Number ;

 eop:polarization ?Polarization ;

 eop:platform ?Platform .

 ?Platform skos:prefLabel ?Mission .

 FILTER (geof:sfOverlaps(?Geometry,

D5.3 – V1.0

Page 15

 "POLYGON((22 40, 23 40, 23 41, 22 41, 22 40));epsg:4326"^^geo:WKT))

 FILTER (?End > "2020-01-25T00:00:00+01:00"^^xsd:dateTime)

 FILTER (?Start < "2020-01-25T23:59:59+01:00"^^xsd:dateTime)

}

Graph entries that have a spatial dimension may be visualised on interactive maps, as shown
in section 4.5.2.

3.2.4 R2RML and RML

The "RDB to RDF Mapping Language" (R2RML) is a recommendation from the W3C for a
language that allows expressing mappings from relational databases to RDF graphs
(https://www.w3.org/TR/r2rml/). The "RDF Mapping Language" (RML) is a draft specification
from the W3C for expressing mapping from heterogeneous data structures (incl. XML, JSON
and CSV) to the RDF data model (https://rml.io/specs/rml/).

GeoTriples, the tools used in EOPEN Task 5.2, supports both R2RML and RML. Because the
EO products metadata to be transformed is encoded in the EOPEN Platform in
JSON/GeoJSON, RML has been used to formalise the rules for generating the Linked open EO
Data. The transformation using GeoTriples and RML rules is detailed in section 4.4.1.2.

3.2.5 GeoTriples

GeoTriples (http://geotriples.di.uoa.gr/) is a free open-source software tool developed by
the National and Kapodistrian University of Athens (NKUA). This tool allows transforming
geospatial data from their original formats into RDF. Supported input formats include
spatially-enabled relational databases (PostGIS and MonetDB), ESRI shapefiles and XML,
GML, KML, JSON, GeoJSON and CSV documents. The transformations are controlled by
mapping rules expressed in R2RML or RML (see section 3.2.4).

GeoTriples has two main components:

• A mapping generator that is capable of inspecting a geospatial data source to
generate mapping rules that may be used to transfer data from the source to an RDF
graph which uses the GeoSPARQL vocabulary.

• A mapping processor that applies mapping rules to geospatial data sources to
transform the data into an RDF graph. The processor is capable of generating RDF
graphs serialised in N3 (default), RDF/XML, and Turtle.

Figure 2 represents the high-level architecture of GeoTriples.

https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml/
http://geotriples.di.uoa.gr/

D5.3 – V1.0

Page 16

Figure 2 – The Architecture of GeoTriples

GeoTriples has been used in EOPEN Task 5.2 to transform EO products metadata formatted
in JSON into RDF graphs encoded in N3. Table 2 provides the instructions for using
GeoTriples on the command-line. In the EOPEN Platform, the tool has been integrated in a
generic process that may be used to convert any supported geospatial data source into RDF
Linked Data (see "Any to RDF Converter" in section 4.3.1), as demonstrated in the workflows
described in section 4.4.1.

Table 2 – GeoTriples Command-Line Instructions (Fragments)
.___.

|\.___./|

|\| GeoTriples |/|

|\| a tool for transforming EO/geospatial data into RDF |/|

 \.___./

Usage: geotriples-cmd [mode] [options] <source>|[mapping]

 Modes:

 generate_mapping -- Generate a mapping file for a:

 1. Relational Database (MonetDB, Postgresql, Mysql etc.)

 Support for geometries only with MonetDB and Postgresql

 2. Shapefile

 3. XML (GML, KML etc), accompanied with an XSD schema definition

 dump_rdf -- Convert the input to an RDF graph, using a mapping file. Input can be

 1. Relational Database (MonetDB, Postgresql, Mysql etc.)

 2. Shapefile

 3. XML (GML, KML, etc)

 4. JSON (GeoJSON)

 5. CSV

 The last argument must be the path to the mapping file

Information

A. Usage for generate_mapping: geotriples-cmd generate_mapping [options] <source>

[...]

B. Usage for dump_rdf: geotriples-cmd dump_rdf [options] mapping

 mapping mappingfile (R2RML or RML using -rml)

 Options:

D5.3 – V1.0

Page 17

 Database options:

 -u username Database Username (Optional)

 -p password Database Password (Optional)

 -jdbc JDBC URL The JDBC URL of the input database

 Shapefile options:

 -sh source file Input Source Shapefile

 XML/GML/KML options:

 -i inputfile Input XML/GML/KML file if used with the -readyeop or -readykml arguments

 -readyeop Use the embended EOP mapping of GeoTriples.

 -readykml Use the embended KML mapping of GeoTriples.

 General options:

 -o outfile Output file name (default: stdout)

 -b base IRI e.g., http://data.linkedeodata.eu/talking-fields

 -f format Can be N3, RDF/XML, TURTLE (default: N3)

 -rml Use RML processor (Default is R2RML processor)

 Examples:

 Shapefile (R2RML): geotriples-cmd dump_rdf -o out.nt -b http://example.com -sh shapefile.shp mapping.ttl

 Shapefile (RML): geotriples-cmd dump_rdf -o out.ttl -f TURTLE -b http://example.com mapping.ttl

 XML (RML): geotriples-cmd dump_rdf -o out.nt -b http://example.com mapping.ttl

 JSON (RML): geotriples-cmd dump_rdf -o out.xml -f RDFXML -b http://example.com mapping.ttl

 Database (R2RML): geotriples-cmd dump_rdf -o out.nt -b http://example.com -u dbuser -p dbpassword -jdbc

jdbc:postgresql://localhost:5432/dbname mapping.ttl

3.2.6 Strabon

Strabon (http://www.strabon.di.uoa.gr/) is a free open-source RDF triplestore developed by
the National and Kapodistrian University of Athens (NKUA). The implementation of Strabon
started in EC project Teleios (http://www.earthobservatory.eu/Strabon) and has continued
in follow EC projects such as LEO and MELODIES.

Due to its built-in support for spatial and temporal dimensions, it is well suited for storing
geospatial data that change over time. It supports two extensions of SPARQL: stSPARQL,
which accesses data in stRDF form and GeoSPARQL, which queries geospatial data. It is
mainly used to represent temporal dimensions among the data by using events or facts that
change over time as it also offers some temporal functions. It extends the Sesame RDF
triplestore by supporting and handling thematic, spatial and temporal data.

Strabon has been used to store and manage the Linked open EO Data created in EOPEN
Task 5.2.

3.2.7 GraphDB

GraphDB (https://www.ontotext.com/products/graphdb/) is an RDF graph database
(triplestore) developed by Ontotext. Its last major version, GraphDB 9.0 is available in three
flavours: the Enterprise, the Standard and the Free editions.

GraphDB supports the relevant standards including SPARQL 1.1 and GeoSPARQL.

GraphDB has been used in the context of EOPEN Tasks T5.1 and T5.3 to add support for
non-EO Linked Data and semantic reasoning into the EOPEN Platform, as reported in D5.2. In
this context, GraphDB is used to stored information about collected tweets, detected events,
and identified flooded areas. The demonstration workflow described in section 4.4.2 uses
the "Query GraphDB" process (section 4.3.4) to obtain non-EO data from GraphDB and
merges them with EO data obtained from Strabon before generating a consolidated RDF
graph.

3.3 Applicable Ontologies

The objective of EOPEN Task 5.2 is to provide the tools and the methodologies for
generating and using the metadata of raw EO products as Linked Data (RDF graphs). It was
not the intention to convert or re-encode the data itself (e.g. raster images), nor to support

http://www.strabon.di.uoa.gr/
http://www.earthobservatory.eu/Strabon
https://www.ontotext.com/products/graphdb/

D5.3 – V1.0

Page 18

specific application domains such as floods, disaster risk management, etc. The latter is
partially covered by the other WP5 tasks, as it is reported in D5.2.

The good practice when a new Linked Data model must be defined is to integrate in the
model vocabulary from pre-existing ontologies whenever it is possible. There is no point to
create new concepts for representing elements of information that already exist in other
models. This applies for example, to phenomena start and end time, document identifier,
title and description, geographical locations, media name, type and size, etc.

The data model that has been targeted in this work is the one described in the OGC
Discussion Paper 16-074r0 "EO Metadata Discovery using Linked Data" [2]. This document
specifies how EO collection and product properties may be encoded as Linked Data.

The discussion paper describes how each individual element of information available in the
OGC Observation & Measurement (O&M) data model should be mapped to an RDF type,
predicate or property. EO-specific properties are mapped using concepts from a new
ontology (with URI "http://www.opengis.net/eop/2.1#") whereas non-EO specific
properties are mapped using concepts available in other pre-existing popular ontologies.

For example:

• The Dublin Core Terms ontology (https://www.dublincore.org/specifications/dublin-
core/dcmi-terms/) is used to map product identifier, title and abstract information.

• The Observation & Measurement (https://lov.linkeddata.es/dataset/lov/vocabs/oml)
is used to encode information defined in ISO 19109 Geographic Information – Rules of
Application Schema.

• The iCalendar ontology (https://www.w3.org/2002/12/cal/ical#) is used to encode
temporal information (such as start and end date and time).

• The Data Catalog Vocabulary (DCAT, https://www.w3.org/TR/vocab-dcat-2/) is used to
encode the information that is also present in data catalogues.

• The Media RSS of Yahoo (https://www.feedforall.com/mediarss.htm) is used to
encode the information about the media content (e.g. image format and type).

EO product metadata include information about the data itself but should also indicate in
which context it has been obtained (e.g. during a satellite mission such as Sentinel-1), which
tools have been used to capture the data (e.g. Sentinel-1 platform 1A with a given sensor),
and in which manner the data has been processed (e.g. Level-1a, Level-1b processors
identification).

When platform or sensor specific information is included, it is needed to map the related
properties to platform or sensor specific vocabulary. For this reason, the data model
proposed in the OGC Discussion Paper integrates in the model vocabularies that are specific
to optical missions and SAR missions, for example.

The rules implemented to transform the EO products metadata into Linked Data comply
with the mapping proposed in the document. This is described in details in section 4.4.1.2.

Figure 3, below, shows a graphical representation of the RDF graph generated with the
properties that are available (within the EOPEN Platform) about a given EO product.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://lov.linkeddata.es/dataset/lov/vocabs/oml
https://www.w3.org/2002/12/cal/ical
https://www.w3.org/TR/vocab-dcat-2/
https://www.feedforall.com/mediarss.htm

D5.3 – V1.0

Page 19

Figure 3 – EO Product (Dataset) Linked Data Model

It must be noted that a data model can always be extended with new links and properties,
when appropriate. Also, should different models be of interest for representing the same
information, nothing prevents generating the two (or more) alternatives and storing the
resulting RDF graph in a graph database.

D5.3 – V1.0

Page 20

4 LINKED OPEN EO DATA IN THE EOPEN PLATFORM

This chapter starts with the description of the Earth Observation data (EO products)
available in the EOPEN Platform and used by the three Pilot Use Cases and with the manner
the EO products metadata are obtained.

The chapter continues with the list of services, processes and workflows that have been
implemented and deployed in order to demonstrate the transformation of EO products
metadata into Linked Data, the storage of this data in a triple store, and its exploitation using
search and filter queries.

The last section introduces the different means that are available for visualising Linked open
EO Data (applicable also to any Linked Data) in the EOPEN User Portal.

4.1 Available Earth Observation Data

Different types of Earth Observation data may be considered, usually organised in three
categories: in-situ, air borne and space borne. In-situ data refers to the data collected on the
ground or with a physical contact with the ground. These are typically collected by sensor
installed at static or mobile stations (meteorological stations, controlled and autonomous
rovers, etc.) In-situ data is often used as ground truth data as it directly records phenomena,
unlike the air and space borne data that are altered by the air and the atmosphere that is
present between the phenomena and the sensors.

Air borne data is recorded by sensors mounted in manned and unmanned flying vehicles
such as airplanes, helicopters and drones (UAVs). Space borne data are collected by sensors
located in space, such as on a satellite or a space station.

The data referred to in WP Task 5.2 concerns the space borne data and as the objective is to
provide it to the Pilot Use Cases, the focus has been put on the EO open data harvested by
the "Umbrella Application of Sentinel Hub", result of the work on KR10.

The Umbrella Application facilitates the search and discovery of the Sentinel products
available in a series of Sentinel hubs by providing a unique API for obtaining the metadata of
the available products. The EOPEN platform runs workflows at regular interval for keeping
this centralised catalogue up-to-date. In particular, workflows are used to harvest the new
products metadata, remove the products that are not directly available anymore (e.g. after
they have been moved to a long term archive by the originating hubs), and measure the
speed of data transfer for rating the hubs based on their download speed.

The Umbrella Application runs as a service within the EOPEN Platform. Details about the
Umbrella Application may be found in EOPEN deliverable D3.1 "EO Data Acquisition from the
Collaborative Ground Segment and Quality Control".

The Umbrella Application provides a single point of access to data from all available Sentinel
missions: Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5p.

D5.3 – V1.0

Page 21

Table 3 - Example Umbrella Application query and response

Query Parameters and URL

Parameters:

• End-point: http://<ip-address>:<port>/products

• Mission: sentinel1

• Product type: GRD

• Bounding box: 20.8, 38.41, 23.82, 40

• Date range: 2020-01-01 / 2020-06-30 (both dates included)

• Output format: JSON

Resulting URL:

http://<ip-address>:<port>/products/sentinel1?format=json
&in_bbox=20.8,38.41,23.82,40&limit=100&offset=0&product_type=GRD
&sensing_date__gte=2020-06-01&sensing_date__lte=2020-06-30

D5.3 – V1.0

Page 22

Response (JSON fragment)

The response document indicates that 120 images match the search criteria. As requested, the
document only contains the first 100 entries. Links to navigate to the previous and next 100 records
are provided as well (here, the "previous" link is null as we are in the first page):

This example shows that in the output generated by the Umbrella Application the
geometries (product footprints) are encoded according to the GeoJSON standard but not the
product properties. This prevents using the results in a generic GeoJSON viewer, for
example, but has no impact in the work described in this document. The mapping rules for
transforming the JSON entries into RDF must simply use the appropriate path to extract each
product property.

D5.3 – V1.0

Page 23

D3.1, Appendix A describes the RESTful API for querying Sentinel data from the Umbrella
Application. It details also the mission-specific filters that may be applied, for example, the
polarization values for Sentinel-1 products and the cloud coverage of Sentinel-2 products.

4.2 Services

In the EOPEN Platform, services provide always running features to the processes deployed
and executed as part of workflows and to visualisation components integrated in the EOPEN
User Portal. The updated list of services running in the EOPEN Platform is provided in D6.5,
the Final System User and Developer Guide.

Hereafter are described the services that are involved in the implementation of the Linked
Data workflows described in section 4.4, below.

4.2.1 Umbrella Application of Sentinel Hubs

The Umbrella Application of Sentinel Hubs (KR10) has been shortly introduced in section 4.1,
above. The design and implementation details may be found in deliverable D3.1.

This service is not part of the work on Linked Data. However, it is the catalogue used to
discover the existing Sentinel products and to obtain their metadata. It is thus used by the
first workflow described in section 4.4.1, below.

4.2.2 GraphDB

An instance of the GraphDB graph database (see sections 3.2.2 and 3.2.7) runs in the EOPEN
Platform for providing the means to store and retrieve metadata from social media (tweets)
and observations coming from the analysis of satellite images (e.g. flooded area masks). This
information is collected and processed by PUC specific workflows. Before being inserted in
GraphDB, the data is converted into Linked Data.

4.2.3 Strabon

An instance of the Strabon graph database (see sections 3.2.2 and 3.2.6) runs in the EOPEN
Platform for providing the means to store and retrieve the metadata of EO products
converted in Linked Data.

4.3 Processes

The processes are the tasks that are interconnected in a workflow and that are deployed in a
worker node and remotely executed by the workflow engine integrated in the EOPEN
Platform. Each process is implemented as a Dockerized service. After its only execution, a
process is undeployed, freeing the execution resources for the deployment and execution of
other processes.

Below are described the processes that have been implemented specifically for creating the
test workflows described in section 4.4.

D5.3 – V1.0

Page 24

4.3.1 Any to RDF Converter

The "Any to RDF Converter" process allows converting structured data into RDF. As it uses
NKUA’s GeoTriples introduced in section 3.2.5, supported input formats include JSON, XML,
CSV, and Shapefile, and it is able to serialise the resulting RDF into N3, XML and Turtle.

GeoTriples is a generic tool that is entirely controlled using mapping rules.

The process receives as inputs:

• the name of the input file,

• the name of the output file,

• the name of the file that contain the mapping rules, and

• the name of the file that defines the applicable RDF namespaces.

The mapping rules expressed in RML (see section 3.2.4) must contain the path and name of
the input file. The input file itself is not to be provided as a parameter to GeoTriples.
Hard-coding the input files in the RML file allows parsing and merging data stored in several
input files and generating a consolidated RDF file. On the other hand, this is an
inconvenience for creating a process that is potentially reusable to transform input files of
various names into RDF.

To circumvent this limitation, instead of passing a fully defined RML file to the process, this
may contain placeholders where the input file name must be inserted. The process takes
care to substitute the placeholders with the name of the input file provided in parameter.

For example, this is an RML file fragment that contains a placeholder:

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

When this RML file is provided to the process together with the input file "/tmp/input.json",
the RML file is updated to contain the path and name of the input file:

 rml:logicalSource [

 rml:source "/tmp/input.json";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

As GeoTriples is implemented in Java, the Python-based process generates a command line
and executes it in a sub-process.

Example generated command:

java -jar geotriples-master-cmd.jar dump_rdf –rml -ns namespaces.ns \

 -o output.rdf mapping.rml.ttl

The generated RDF file is stored in the process outputs folder if no absolute path is provided
otherwise the absolute output path is used. The process outputs status string "OK" and the
path and name of the output RDF file.

D5.3 – V1.0

Page 25

Figure 4 represents the "Any to RDF Converter" process as it appears in the Workflow Editor
and Figure 5 shows the parameterisation form that is automatically generated to execute
the process on-demand.

Figure 4 – "Any to RDF Converter" Process in the Workflow Editor

Figure 5 – "Any to RDF Converter" Process Parameterisation Form

4.3.2 Store in Strabon

This process is used to store data encoded in RDF into a Strabon graph database (such as the
one running as a service in the EOPEN Platform).

The process requires the following input parameters:

• The URL (scheme, domain, port and path) of the Strabon endpoint.

• The path and name of the file that contains the encrypted Strabon user credentials.

• The path and name of the input RDF file

• The format of the RDF file: RDF/XML, N3, N-Triples or Turtle

• The URI of the graph in which the RDF data must be stored.

If the operation succeeds, the "Store in Strabon" process outputs the status string "OK".

Figure 6 represents a workflow that chains an "Any to RDF Converter" process with the
"Store in Strabon" process, as it appears in the Workflow Editor. Figure 7 shows the
parameterisation form that is automatically generated to execute this workflow.

D5.3 – V1.0

Page 26

Figure 6 – "Convert to RDF and Store in Strabon" Workflow in Workflow Editor

Figure 7 – "Convert to RDF and Store in Strabon" Workflow Parameterisation Form

4.3.3 Query Strabon

This process is used to query a Strabon instance such as the Strabon service running in the
EOPEN Platform using GeoSPARQL.

The process receives the following input parameters:

• The GeoSPARQL query (inline, not as a file name),

• The URL (scheme, domain, port and path) of the Strabon endpoint,

• The path and name of the output file,

D5.3 – V1.0

Page 27

• The format of the output file.

The process outputs a GeoSPARQL Results document (after a GeoSPARQL SELECT query) or
an RDF graph (after a GeoSPARQL CONSTRUCT query). Depending on the nature of the
query, different output formats are supported:

• SELECT outputs: SPARQL/XML, SPARQL/JSON, CSV, TSV, Binary, KML, KMZ, GeoJSON.

• CONSTRUCT outputs: RDF/XML, N-Triples, Turtle, N3, TriX, TriG, BinaryRDF.

The output file is stored in the process outputs folder if no absolute path is provided,
otherwise the absolute output path is used. The process outputs status string "OK" and the
path and name of the output file.

4.3.4 Query GraphDB

This process is used to query a GraphDB instance such as the GraphDB service running in the
EOPEN Platform using GeoSPARQL.

The process receives the following input parameters:

• The GeoSPARQL query (inline, not as a file name),

• The URL (scheme, domain, port and path) of the GraphDB endpoint,

• The Identifier of the GraphDB repository to query,

• The path and name of the output file,

• The format of the output file.

The process outputs a GeoSPARQL Results document (after a GeoSPARQL SELECT query) or
an RDF graph (after a GeoSPARQL CONSTRUCT query). Depending on the nature of the
query, different output formats are supported:

• SELECT outputs: SPARQL/XML, SPARQL/JSON, BinaryRDF.

• CONSTRUCT outputs: RDF/XML, RDF/JSON, Turtle, N3.

The output file is stored in the process outputs folder if no absolute path is provided,
otherwise the absolute output path is used. The process outputs status string "OK" and the
path and name of the output file.

4.3.5 Query RDF File

This process is used to query an RDF graph serialised in a file using SPARQL.

The process receives the following input parameters:

• The SPARQL SELECT query (inline, not as a file name),

• The path and name of the file that contains the graph data,

• The format of the input file,

• The path and name of the output file,

• The format of the output file.

This process only supports SPARQL SELECT queries and can thus only produce SPARQL
Results documents. Supported output format are XML and JSON.

D5.3 – V1.0

Page 28

The output file is stored in the process outputs folder if no absolute path is provided,
otherwise the absolute output path is used. The process outputs status string "OK" and the
path and name of the output file.

4.3.6 RDF Merger

This process merges two or more RDF graphs serialised in individual files into a single graph.
Internally, the process uses the Python library "rdflib"1 to load the individual files into a
conjunctive graph and to serialise the resulting graph in an output file.

The process receives the following input parameters:

• The path and name of up to five files that contain the RDF graphs,

The format of each input file is automatically detected.

• The path and name of the output file,

• The format of the output file.

Supported output format are: N3, NT, Turtle, RDF/XML, TriX, TriG, N-Quads and pretty XML.

The output RDF file is stored in the process outputs folder if no absolute path is provided,
otherwise the absolute output path is used. The process outputs status string "OK" and the
path and name of the output file.

4.4 Workflows

Two workflows have been prepared to test and demonstrate the usage of the conversion,
storage, extraction and merging of Linked Data:

• The first workflow obtains Sentinel products metadata from the Umbrella Application,
converts them to Linked Data and stores the result in the Strabon service.

• The second workflow uses GeoSPARQL to search for Linked Data in GraphDB and
Strabon, merges the matching sub-graphs and outputs the results in a SPARQ Results
document, ready for visualisation.

4.4.1 EO Products Metadata Conversion to Linked Data and Storage in Strabon

 Workflow Description 4.4.1.1

This workflow has a number of unconnected input parameters. By default, unconnected
inputs are used to automatically generate the parameterisation form presented to the user
when the workflow is executed on-demand. To prevent displaying too many parameters to
the user, input parameters may be given a default value and flagged to be hidden.

1
 https://rdflib.readthedocs.io/en/stable/index.html

https://rdflib.readthedocs.io/en/stable/index.html

D5.3 – V1.0

Page 29

The remaining input parameters that the user is invited to edit are the following:

1. Mission (e.g. "sentinel1")

2. Bounding box (AOI)

3. Date range (TOI)

4. Amount of results in the response (default: 100)

5. Offset of the results in the response (default: 0)

6. Namespace definition file

7. RML template file containing the mapping rules

8. Output RDF file

9. File format of the RDF input file

10. Strabon endpoint URL

11. File containing the encrypted Strabon user credentials

12. Target graph URI

The first five parameters are used to build the HTTP request sent to the Umbrella Application
to search for matching EO products. The next three parameters configure the "any to RDF
converter" and the last four parameters configure the process that stores the generated RDF
file into Strabon.

Figure 9 shows the parameterisation form displayed to the users who want to manually
execute the workflow. The form is pre-filled-in with the default values configured in the
workflow definition via the Workflow Editor.

Figure 8 shows the workflow as edited in the Workflow Editor. The first series of tasks are
necessary to build the URL for fetching the EO products metadata from the Umbrella
Application.

The main steps are as follow:

❶

❷

❸

❹

Use input functions and template renderers to build the URL to query the Umbrella
Application. The use of these built-in functions is described in the Developer Guide
D6.5.

Query the Umbrella Application and save the response (JSON file) on disk. This is
performed by a generic "file fetcher" process which issues an HTTP GET request and
stores the response on disk (see D6.5 for details).

Convert the JSON file containing the EO products metadata into an RDF graph

Store the RDF graph in Strabon

D5.3 – V1.0

Page 30

❶

❷

❸

❹

Figure 8 – Linked Data Conversion and Storage Workflow

D5.3 – V1.0

Page 31

Figure 9 – Linked Data Conversion and Storage Workflow Parameterisation Form

 Conversion of the products metadata 4.4.1.2

The key element in this workflow is the set of mapping rules that are used to convert the EO
products metadata encoded in JSON (see section 4.1) into an RDF graph encoded in
N-Triples.

The implemented mapping rules target the graph structure described in the OGC Discussion
Paper 16-074r0 "EO Metadata Discovery using Linked Data" [2]. This document specifies how
EO collection and product properties may be encoded as Linked Data. However, as shown in
the example in Table 3, page 21, the Umbrella Application only provides a subset of these
properties. The mapping is thus limited to the available properties. The following tables
describe how each property is mapped to an entity in the Linked Data. In some cases, a
property becomes a literal value (e.g. identifier, pass_direction, product_type)
but it may also be used to create an object having itself properties (e.g. url_download). In
the latter cases, special rules are used to construct the links with the appropriate subjects,
predicate type and objects.

Complete examples are provided in Appendix A, page 54.

D5.3 – V1.0

Page 32

Table 4 – Namespaces and Prefixes

Namespaces and Prefixes

@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix rml: <http://semweb.mmlab.be/ns/rml#> .

@prefix rrx: <http://www.w3.org/ns/r2rml-ext#> .

@prefix rrxf: <http://www.w3.org/ns/r2rml-ext/functions/def/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix geo: <http://www.opengis.net/ont/geosparql#> .

@prefix geof: <http://www.opengis.net/def/function/geosparql/> .

@prefix opt: <http://www.opengis.net/opt/2.1#> .

@prefix eop: <http://www.opengis.net/eop/2.1#> .

@prefix om: <http://www.opengis.net/om/2.0#> .

@prefix ical: <http://www.w3.org/2002/12/cal/ical#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix oml: <http://def.seegrid.csiro.au/ontology/om/om-lite#> .

@prefix mrss: <http://search.yahoo.com/mrss/> .

@prefix ows: <http://www.opengis.net/ows/2.0#> .

@prefix xlink: <http://www.w3.org/1999/xlink#> .

@prefix dcat: <http://www.w3.org/ns/dcat#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix gmd: <http://www.isotc211.org/2005/gmd> .

@prefix gml: <http://www.opengis.net/gml/3.2#> .

@prefix gcmd: <http://gcmdservices.gsfc.nasa.gov/kms/concept/> .

@prefix media: <http://search.yahoo.com/mrss/> .

Table 5 – Dataset Object Metadata Mapping Rules

Properties Mapping Rules

uuid

<#Observation>

 # Specify the subject URI

 rr:subjectMap [

 rr:template "http://www.w3.org/ns/dcat#Dataset/{uuid}"

];

Implicit subject
types

 # Hard-coded triple: <subject> rdf:type dcat:Dataset

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object dcat:Dataset

];

 # Hard-coded triple: <subject> rdf:type oml:Observation

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:Observation

];

Implicit sensor
type
(for Sentinel-1)

 # Hard-coded: <subject> eop:sensorType "RADAR"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:sensorType;

 rr:object "RADAR"

];

D5.3 – V1.0

Page 33

source, uuid # Triple: <subbject> dct:description "{uuid}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate dct:description;

 rr:objectMap [

 rr:template "EO Product record {uuid} from the Umbrella

Application (source: {source})";

 rr:datatype xsd:string

]

];

identifier # Triple: <subject> dct:identifier "{identifier}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate dct:identifier;

 rr:objectMap [

 rml:reference "identifier"

]

];

geom_footprint # Triple:

 # <subject> dct:spatial "{geom_footprint}"^^geo:wktLiteral

 rr:predicateObjectMap [

 rr:predicate dct:spatial;

 rr:objectMap [

 rrx:function rrxf:asWKT;

 rrx:argumentMap([rml:reference "geom_footprint"]);

 rr:datatype geo:wktLiteral;

];

];

ingestion_date # Triple:

 # <subject> eop:processingDate "{ingestion_date}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:processingDate;

 #rr:predicate dct:issued;

 rr:objectMap [

 rml:reference "ingestion_date";

 rr:datatype xsd:dateTime

]

];

product_type # Triple: <subject> eop:productType "{poduct_type}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:productType;

 rr:objectMap [

 rml:reference "product_type";

 rr:datatype xsd:string

]

];

pass_direction # Triple: <subject> eop:orbitDirection "DESCENDING"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitDirection;

 rr:objectMap [

 rml:reference "pass_direction";

 rr:datatype xsd:string

]

];

Link to the
Phenomenon
Time object
(Table 6)

 # Triple: <subject> oml:phenomenonTime <#PhenomenonTime>

 rr:predicateObjectMap [

 rr:predicate oml:phenomenonTime;

 rr:objectMap [

 rr:parentTriplesMap <#PhenomenonTime>

];

];

D5.3 – V1.0

Page 34

Link to the
Process object
(Table 7)

 # Triple: <subject> oml:procedure <#Process>

 rr:predicateObjectMap [

 rr:predicate oml:procedure;

 rr:objectMap [

 rr:parentTriplesMap <#Process>

];

];

Link to the Result
object
(Table 10)

 # Triple: <subject> oml:result <#Result>

 rr:predicateObjectMap [

 rr:predicate oml:result;

 rr:objectMap [

 rr:parentTriplesMap <#Result>

];

];

.

Table 6 – Dataset Phenomenon Time Mapping Rules

Properties Mapping Rules

source, uuid

<#PhenomenonTime>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/phenomenonTime"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:TemporalObject

];

sensing_date # Triple: <subject> ical:dtstart "{sensing_date}"^^xsd:dateTime

 rr:predicateObjectMap [

 rr:predicate ical:dtstart;

 rr:objectMap [

 rml:reference "sensing_date";

 rr:datatype xsd:dateTime

]

];

sensing_date
(again)

 # Triple: <subject> ical:dtend "{sensing_date}"^^xsd:dateTime

 # The Umbrella App. does not provide the sensing end timestamp.

 rr:predicateObjectMap [

 rr:predicate ical:dtend;

 rr:objectMap [

 rml:reference "sensing_date";

 rr:datatype xsd:dateTime

]

];

.

D5.3 – V1.0

Page 35

Table 7 – Dataset Process Object (O&M EarthObservationEquipment) Mapping Rules

Properties Mapping Rules

source, uuid

<#Process>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/process"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:Process

];

pass_direction # Triple:

 # <subject> eop:orbitDirection "{pass_direction}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitDirection;

 rr:objectMap [

 rml:reference "pass_direction";

 rr:datatype xsd:string

]

];

swath # Triple: <subject> eop:swathIdentifier "{swath}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:swathIdentifier;

 rr:objectMap [

 rml:reference "swath";

 rr:datatype xsd:string

]

];

orbit_number # Triple:

 # <subject> eop:orbitNumber "{orbit_number}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitNumber;

 rr:objectMap [

 rml:reference "orbit_number";

 rr:datatype xsd:integer

]

];

Implicit
(Radar Products)

 # Hard-coded: <subject> eop:sensorType "RADAR"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:sensorType;

 rr:object "RADAR"

];

sensor_oper-
ational_mode
(Radar Products)

 # Triple: <subject> sar:polarisationMode "IW"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate sar:polarisationMode;

 rr:objectMap [

 rml:reference "sensor_operational_mode";

 rr:datatype xsd:string

]

];

D5.3 – V1.0

Page 36

polarization
(Radar Products)

 # Triple:

 # <subject> sar:polarisationChannels "VV VH"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate sar:polarisationChannels;

 rr:objectMap [

 rml:reference "polarization";

 rr:datatype xsd:string

]

];

Link to Platform
object
(Table 8)

 # Triple: <subject> eop:platform <#Platform>

 rr:predicateObjectMap [

 rr:predicate eop:platform;

 rr:objectMap [

 rr:parentTriplesMap <#Platform>;

];

];

Link to
Instrument object
(Table 9)

 # Triple: <subject> eop:instrument <#Instrument>

 rr:predicateObjectMap [

 rr:predicate eop:instrument;

 rr:objectMap [

 rr:parentTriplesMap <#Instrument>;

];

];

.

Table 8 – Dataset Platform Object Mapping Rules

Properties Mapping Rules

Static platform
URI

<#Platform>

 # Specify the Platform URI (from NASA GCMD concepts
2
)

 rr:subjectMap [

 rr:constant gcmd:007c3084-89db-458e-8387-14e192b6cb8e;

];

Static platform
label

 # Hard-coded: <subject> skos:altLabel "SENTINEL-1"^^xsd:string

 # Use other RML templates to convert Sentinel-2, etc. metadata

 rr:predicateObjectMap [

 rr:predicate skos:altLabel;

 rr:object "SENTINEL-1"

];

.

2
 Sentinel platforms:
Sentinel-1: https://gcmd.earthdata.nasa.gov/kms/concept/007c3084-89db-458e-8387-14e192b6cb8e
Sentinel-2: https://gcmd.earthdata.nasa.gov/kms/concept/2ce20983-98b2-40b9-bb0e-a08074fb93b3
Sentinel-3: https://gcmd.earthdata.nasa.gov/kms/concept/8a19f309-46ee-424b-be9f-e7e57e5b8ca0
Sentinel-5p: https://gcmd.earthdata.nasa.gov/kms/concept/77e9a75e-2c3b-428b-8b21-b6a902dd8fe
List of platforms in JSON format:
https://gcmdservices.gsfc.nasa.gov/kms/concepts/concept_scheme/platforms/?format=json

https://gcmd.earthdata.nasa.gov/kms/concept/007c3084-89db-458e-8387-14e192b6cb8e
https://gcmd.earthdata.nasa.gov/kms/concept/2ce20983-98b2-40b9-bb0e-a08074fb93b3
https://gcmd.earthdata.nasa.gov/kms/concept/8a19f309-46ee-424b-be9f-e7e57e5b8ca0
https://gcmd.earthdata.nasa.gov/kms/concept/77e9a75e-2c3b-428b-8b21-b6a902dd8fe
https://gcmdservices.gsfc.nasa.gov/kms/concepts/concept_scheme/platforms/?format=json

D5.3 – V1.0

Page 37

Table 9 – Dataset Instrument Object Mapping Rules

Properties Mapping Rules

Static
instrument URI

<#Instrument>

 # Specify the Instrument URI (from NASA GCMD concepts
3
)

 rr:subjectMap [

 rr:constant gcmd:1c53d85e-3792-4081-9748-192fd3140aa6;

];

instrument # Triple: <subject> skos:altLabel "SAR-C SAR"^^xsd:string

 # Use other RML templates to convert Sentinel-2, etc. metadata

 rr:predicateObjectMap [

 rr:predicate skos:altLabel;

 rr:objectMap [

 rml:reference "instrument";

 rr:datatype xsd:string

]

];

.

Table 10 – Dataset Result Object Mapping Rules

Properties Mapping Rules

Result subject
URI

<#Result>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/result"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object rdf:Class

];

Link to Media
Content object
(Table 11)

 # Triple: <subject> media:group <#Content>

 rr:predicateObjectMap [

 rr:predicate media:group;

 rr:objectMap [

 rr:parentTriplesMap <#Content>;

];

];

Link to
Quicklook
object
(Table 12)

 # Triple: <subject> media:group <#ContentQuicklook>

 rr:predicateObjectMap [

 rr:predicate media:group;

 rr:objectMap [

 rr:parentTriplesMap <#ContentQuicklook>;

];

];

.

3
 Sentinel-1 C-SAR instrument:
https://gcmd.earthdata.nasa.gov/kms/concept/1c53d85e-3792-4081-9748-192fd3140aa6

https://gcmd.earthdata.nasa.gov/kms/concept/1c53d85e-3792-4081-9748-192fd3140aa6

D5.3 – V1.0

Page 38

Table 11 – Dataset Media Content Object Mapping Rules

Properties Mapping Rules

Media Content
URI and type

<#Content>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{url_download}"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Content

];

Implicit media
type

 # Hard-coded media type

 # <subject> media:type "application/binary"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:type;

 rr:object "application/binary"

];

Implicit media
expression

 # Hard-coded media expression

 # <subject> media:expression "full"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:expression;

 rr:object "full"

];

size # Triple: <subject> media:fileSize “{size}”^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:fileSize;

 rr:objectMap [

 rml:reference "size";

 rr:datatype xsd:string

]

];

.

Note: No mapping is foreseen in the recommendation for a checksum URL.
Note: The size value should be an amount of bytes. The Umbrella Application

returns a non-integer value (e.g. "1.65 GB")

Table 12 – Dataset Quicklook Content Object Mapping Rules

Properties Mapping Rules

Quicklook URI
and type

<#ContentQuicklook>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{quicklook}"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Content

];

D5.3 – V1.0

Page 39

Implicit media
type

 # Hard-coded media type

 # <subject> media:type "image/jpeg"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:type;

 rr:object "image/jpeg"

];

Implicit medium # Hard-coded media medium

 # <subject> media:medium "image"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:medium;

 rr:object "image"

];

Implicit media
expression

 # Hard-coded media expression

 # <subject> media:expression "sample"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:expression;

 rr:object "sample"

];

Link to Media
Category object
(Table 13)

 # Triple: <subject> media:category <#QuicklookCategory>

 rr:predicateObjectMap [

 rr:predicate media:category;

 rr:objectMap [

 rr:parentTriplesMap <#QuicklookCategory>;

];

];

.

Table 13 – Dataset Quicklook Category Object Mapping Rules

Properties Mapping Rules

Quicklook
Media Category
URI and type

<#QuicklookCategory>

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/result/quicklook/category"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Category

];

Implicit
quicklook about
property

 # Hard-coded QUICKLOOK category

 # <subject> rdf:about "http://[...]/1.0#QUICKLOOK"

 rr:predicateObjectMap [

 rr:predicate rdf:about;

 rr:object "http://www.opengis.net/spec/EOMPOM/1.0#QUICKLOOK"

];

.

Table 14 contains a fragment of the Linked Data (RDF) document generated by GeoTriples
embedded in the "Any to RDF Converter" process.

Table 14 – Generated Linked EO Data (Fragment)

Generated Linked EO Data (Fragment)
<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://www.opengis.net/eop/2.1#orbitDirection> "DESCENDING"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10> <http://purl.org/dc/terms/spatial>

"<http://www.opengis.net/def/crs/EPSG/0/4326> MULTIPOLYGON (((22.735907 39.305035, 23.118069 40.806633,

20.056725 41.211155, 19.741592 39.710724, 22.735907

39.305035)))"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

D5.3 – V1.0

Page 40

<http://www.opengis.net/eop/2.1#sensor_operational_mode> "IW"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10> <http://www.w3.org/1999/02/22-rdf-

syntax-ns#type> <http://def.seegrid.csiro.au/ontology/om/om-lite#Observation> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://www.opengis.net/eop/2.1#polarization> "VV VH"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://www.opengis.net/eop/2.1#sensorType> "RADAR"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://def.seegrid.csiro.au/ontology/om/om-lite#result> <https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-

87ee-0a5a5aba7b10/result> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/result>

<http://search.yahoo.com/mrss/group> <https://data.sentinel.zamg.ac.at/odata/v1/Products('dfccba6e-746a-4201-

87ee-0a5a5aba7b10')/$value> .

<https://data.sentinel.zamg.ac.at/odata/v1/Products('dfccba6e-746a-4201-87ee-0a5a5aba7b10')/$value>

<http://search.yahoo.com/mrss/expression> "full"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/odata/v1/Products('dfccba6e-746a-4201-87ee-0a5a5aba7b10')/$value>

<http://search.yahoo.com/mrss/type> "application/binary"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/odata/v1/Products('dfccba6e-746a-4201-87ee-0a5a5aba7b10')/$value>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://search.yahoo.com/mrss/Content> .

<https://data.sentinel.zamg.ac.at/odata/v1/Products('dfccba6e-746a-4201-87ee-0a5a5aba7b10')/$value>

<http://search.yahoo.com/mrss/fileSize> "1.63 GB"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/result> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> <http://www.w3.org/1999/02/22-rdf-syntax-ns#Class> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://def.seegrid.csiro.au/ontology/om/om-lite#phenomenonTime> <https://data.sentinel.zamg.ac.at/dfccba6e-

746a-4201-87ee-0a5a5aba7b10/phenomenonTime> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/phenomenonTime>

<http://www.w3.org/2002/12/cal/ical#dtstart> "2020-01-

01T04:39:23.890000Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/phenomenonTime>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://def.seegrid.csiro.au/ontology/om/om-

lite#TemporalObject> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/phenomenonTime>

<http://www.w3.org/2002/12/cal/ical#dtend> "2020-01-

01T04:39:23.890000Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://www.opengis.net/eop/2.1#productType> "GRD"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10> <http://purl.org/dc/terms/description>

"EO Product record dfccba6e-746a-4201-87ee-0a5a5aba7b10, with filenname

S1A_IW_GRDH_1SDV_20200101T043923_20200101T043948_030602_038181_45E0.SAFE from the Umbrella Application (source:

https://data.sentinel.zamg.ac.at)"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://www.opengis.net/eop/2.1#processingDate> "2020-01-

01T08:46:25.439000Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10> <http://www.w3.org/1999/02/22-rdf-

syntax-ns#type> <http://www.w3.org/ns/dcat#Dataset> .

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10> <http://purl.org/dc/terms/identifier>

"S1A_IW_GRDH_1SDV_20200101T043923_20200101T043948_030602_038181_45E0"^^<http://www.w3.org/2001/XMLSchema#string>

.

<http://www.w3.org/ns/dcat#Dataset/dfccba6e-746a-4201-87ee-0a5a5aba7b10>

<http://def.seegrid.csiro.au/ontology/om/om-lite#procedure> <https://data.sentinel.zamg.ac.at/dfccba6e-746a-

4201-87ee-0a5a5aba7b10/process> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#orbitDirection> "DESCENDING"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#swathIdentifier> "IW"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#instrument> <http://gcmdservices.gsfc.nasa.gov/kms/concept/1c53d85e-3792-4081-

9748-192fd3140aa6> .

<http://gcmdservices.gsfc.nasa.gov/kms/concept/1c53d85e-3792-4081-9748-192fd3140aa6>

<http://www.w3.org/2004/02/skos/core#altLabel> "SAR-C SAR"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#orbitNumber> "30602"^^<http://www.w3.org/2001/XMLSchema#integer> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#sensorType> "RADAR"^^<http://www.w3.org/2001/XMLSchema#string> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process> <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type> <http://def.seegrid.csiro.au/ontology/om/om-lite#Process> .

<https://data.sentinel.zamg.ac.at/dfccba6e-746a-4201-87ee-0a5a5aba7b10/process>

<http://www.opengis.net/eop/2.1#platform> <http://gcmdservices.gsfc.nasa.gov/kms/concept/007c3084-89db-458e-

8387-14e192b6cb8e> .

<http://gcmdservices.gsfc.nasa.gov/kms/concept/007c3084-89db-458e-8387-14e192b6cb8e>

<http://www.w3.org/2004/02/skos/core#altLabel> "SENTINEL-1"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/3a1164e8-da04-4402-9953-50e877802e19>

<http://www.opengis.net/eop/2.1#orbitDirection> "DESCENDING"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://www.w3.org/ns/dcat#Dataset/3a1164e8-da04-4402-9953-50e877802e19> <http://purl.org/dc/terms/spatial>

"<http://www.opengis.net/def/crs/EPSG/0/4326> MULTIPOLYGON (((22.735899 39.305023, 23.118059 40.806622,

20.056717 41.21114, 19.741587 39.710712, 22.735899

39.305023)))"^^<http://www.opengis.net/ont/geosparql#wktLiteral> .

[...]

D5.3 – V1.0

Page 41

 Workflow Execution Report 4.4.1.3

The Execution Report generated in the EOPEN Platform contains all the process input and
output values as well as a link for accessing the generated files in the EOPEN Datastore.

It also contains the start and duration of each process as well as a graphical representation
of the complete workflow (see Figure 10).

Figure 10 – Linked Data Generation and Storage Workflow Execution Report (Fragment)

4.4.2 Interoperable semantic query to retrieve EO and non-EO data

 Workflow Description 4.4.2.1

This workflow is used to demonstrate the possibility to query two or more graph databases
containing EO and non-EO data, merge the results, and obtain either a new graph or a search
result list. Both can be further processed or visualised.

Figure 11 shows the workflow as edited in the Workflow Editor. The steps are as follow:

❶

❷

❸

❹

A "template renderer" is used to build the SPARQL query that will be used to search
for Linked Data in several graph databases. This general purpose built-in function is
described in the Developer Guide D6.5. A CONSTRUCT SPARQL query is used to obtain
sub-graphs from the databases.

In parallel: Query a GraphDB instance and a Strabon instance. The output RDF graphs
are stored on disk.

Merge the two RDF graphs into a single one and store the result on disk.

Apply a SPARQL query on the resulting graph to obtain a SPARQL Results document.

Because we want to semantically merge the results from two or more SPARQL queries, in
step ❷ we must use CONSTRUCT queries and not SELECT queries. A SELECT query produces
SPARQL results that may be compared to a traditional search result list. These results may be
concatenated but the output may not be considered as a semantic graph. A CONSTRUCT
query, on the other hand, produces a sub-graph that can be merged with other sub-graphs
to obtain the linked data that matches the original SPARQL queries. This linked data may be

D5.3 – V1.0

Page 42

further queried, new connections can be discovered and added in the graph, and it may be
serialized in any of the available formats, including RDF/JSON, RDF/XML, N3, N-Triples and
Turtle.

Figure 11 – EO and non-EO Linked Data Query Workflow

Figure 12 shows the parameterisation form displayed to the users who want to manually
execute the workflow.

The input parameters are:

1. The GeoSPARQL query to be sent to the graph databases

2. The Strabon end-point URL, output file name and format

3. The GraphDB end-point URL, repository ID, output file name and format

4. The name and format of the merged RDF graph

5. The SPARQL query to be used to generate the SPARQL Results document, the name of
the output file and format

D5.3 – V1.0

Page 43

The form is pre-filled-in with the default values configured in the workflow definition via the
Workflow Editor.

Figure 12 – EO and non-EO Linked Data Query Parameters

When the workflow is fully executed, we have on disk two versions of the selected Linked
Data: the first version contains an RDF graph (which can be further queries, stored in a graph
database, or displayed as an interactive graph), and the second one contains a SPARQL
Results document that is suitable for visualisation in a more tabular manner (see
section 4.5.3).

 Workflow Execution Report 4.4.2.2

The Execution Report generated in the EOPEN Platform contains all the process input and
output values as well as a link for accessing the generated files in the EOPEN Datastore.

It also contains the start and duration of each process as well as a graphical representation
of the complete workflow (see Figure 13).

Figure 13 – Linked Data Generation and Storage Workflow Execution Report (Fragment)

D5.3 – V1.0

Page 44

Figure 14 shows a fragment of SPARQL Results document formatted in SPARQL/JSON. This
format is particularly suited for visualisation in a Web interface.

Figure 14 – SPARQL Results Document of Merged Linked Data (Fragment)

D5.3 – V1.0

Page 45

4.5 Visualisation of RDF Graphs and SPARQL Results

As explained above, searching for Linked Data in graph databases may lead to results that
are still organised in graphs (result of CONSTRUCT SPARQL queries) or to flat lists of subject-
predicate-object triples (result of SELECT SPARQL queries). Different means may be used to
visualise and interact with the two types of results.

4.5.1 Visualisation of RDF Graphs

Graph data is typically displayed as interactive networks of nodes and links. An example is
the output of the EOPEN User Portal component that displays the communities detected in
social media (Figure 15).

Figure 15 – Social Media Communities Graph (source: D6.5)

The same Dashboard component has been used to visualise RDF graphs containing both
non-EO data retrieved from GraphDB and EO products metadata retrieved from Strabon. An
example result is shown in Figure 16.

D5.3 – V1.0

Page 46

Figure 16 – EO and non-EO Entities Graph

The size of an RDF graph may rapidly become too big to be usable in a user interface. To
circumvent this problem the visualisation component may be extended to dynamically filter
the types of nodes (RDF Subjects and Objects) and links (RDF Predicates) to be displayed on
the screen. Another enhancement is the possibility to dynamically configure the colour and
size of the nodes and links depending on their type. This allows keeping the information
visible on the screen and highlighting only the information of interest.

Selecting an element (link or node) in the graph may reveal all the information available
about it in the graph in a side component, and in particular the list of RDF triples in which it
is present.

A second way to visualise an RDF graph is using a table-based browser. The browser shows
in table information known about a given subject that is its links to objects (which may be
subjects on their turn) and literal values (properties).

In such a graph browser the objects are active links which when clicked reveals the
information available about that object (as a subject). This allows navigating in the graph
interactively.

D5.3 – V1.0

Page 47

Figure 17 shows an example of Linked Data browser implemented by Space Applications
Services in a past project. It shows a Landsat-8 dataset series (EO products collection) entry,
the predicates (in the first table column) and the objects and properties (in the second
column). The objects are clickable links which allow navigating to their dedicated pages.

Figure 17 – Linked EO Data Browser showing a Landsat-8 Dataset Series

4.5.2 RDF Graphs with Spatio-Temporal Dimensions

RDF graphs that link subjects to temporal and locations properties may be filtered by time of
interest (TOI) and area of interest (AOI) but may also be displayed on interactive maps.

The merged graph, output of the workflow described in section 4.4.2, contains multiple
subjects that fulfil these criteria, namely tweets, detected events, flooded locations and
EO products (satellite images).

Figure 18 shows the Geolocalised Linked Data Dashboard component described in D6.5
re-purposed to display both EO and non-EO Linked Data. The figure shows data filtered using
the box in purple (AOI) drawn by the user and the date range (TOI) selector. Displayed data

D5.3 – V1.0

Page 48

include tweets, events and an EO product from the Sentinel-1 mission. The popup displays
some of the EO product properties.

Figure 18 – Geo-localised Linked EO and non-EO Data in a Dashboard Component

4.5.3 Generic SPARQL Results Table

As explained above, SPARQL Results which are obtained by issuing SELECT queries are not
organised in graphs. Each entry in the result list is a record as defined in the SELECT
statement. This may be a triple, if the query explicitly selects subjects, predicates and objects
("SELECT ?s ?p ?o WHERE …") but it may contain other combinations of values as well.

A Dashboard component (Figure 19) has been implemented to allow listing SPARQL Results
listed in a table. The table adapts automatically to the values present in the result records
and each column includes a field that allows filtering the table rows using string fragments.

The table is also paginated. By default, 10 entries are displayed.

The component loads the SPARQL Results document in memory which means that using the
filters and the pagination do not require the component to further communicate with the
backend.

D5.3 – V1.0

Page 49

Figure 19 – Visualisation of SPARQL Results in the EOPEN User Portal

D5.3 – V1.0

Page 50

5 POSSIBLE USES

Most EO product catalogues allow users to search and discover the available products either
via a Web-based graphical interface (integrating a form and a map viewer) or via a
programming interface (standard or not) exposed by a service. These catalogues allow
searching for products using the traditional product type, area of interest (AOI) and date
range (TOI) parameters and possibly other mission and product specific parameters such as
the orbit number and direction, the sensing mode, the polarisation (SAR products) and the
cloud coverage (optical products). This fits the needs of many use cases but may be too
limited for others.

For example, it is not possible, using these interfaces to search for products "close enough"
to a location (that is using a buffer around their footprint), having gaps of maximum "x" days
between them, and having an intersection area bigger than "y" square kilometres.

Taking non-EO data into account, we can even extend this kind of request, for examples by
filtering out from the result list the EO products that include (geographically) less than "z"
tweets related to floods posted in the same week.

These two advanced examples can become reality when the information (EO products
metadata, tweet and event properties, etc.) is encoded as Linked Data and the appropriate
means to query these data is made available.

For short-term phenomena such as floods, Linked Data allows searching for and merging in a
seamless manner all (and only) the relevant information (incl. EO products, tweets and flood
maps) in just a few steps where traditional catalogues and interfaces would typically require
querying different sources multiple times (for example for searching for EO products from
different missions), fusing the results that are not readily compatible, and finally removing
from the list the entries that do not meet the criteria.

Linked Data, and in particular the SPARQL query language also allows searching for graph
fragments that show a given "pattern". This for example allows searching for similar
occurrences of an event in a location by searching for all flood maps with a flooded area
above a certain value, linked to at least "x" tweets about flood, produced in the same period
of the year, and with similar weather conditions (provided the weather conditions are also
available as Linked Data).

For longer term phenomena such as food security and climate change, Linked Data allows
identifying all the spatio-temporal raster data (incl. images and maps) produced between
two dates and intersecting a given area to obtain an heterogeneous list of products that may
be fused for example to experiment with novel kinds of data analytics on timeseries.

Linked Data, and in particular the standards and the technologies behind it (RDF, RML,
SPARQL, graph databases, etc.) allow obtaining, manipulating and analysing the data in a
flexible and intuitive manner. The adoption of independent and well-supported ontologies
brings a semantic homogeneity to the data. Standard formats allow using with generic tools.

Potential users must be informed about the possibilities of Linked Data in order to identify
applicable requirements and implement the tools that fit their needs.

D5.3 – V1.0

Page 51

6 CONCLUSIONS

In this document we have described the work performed in the EOPEN Task 5.2 "Linked
open Earth Observation Data", including the tools and technologies that have been involved,
the EO data that has been transformed and made available as Linked Data, and the software
that has been developed and integrated in the EOPEN Platform.

We have shown that by decomposing the tasks in elementary steps, it is possible to create
processing workflows that meet the needs of the users. The demonstration workflows
described in the document are used to transform structured EO products metadata into
Linked Data, store this in a graph database, but also to query these databases, merge the
responses and visualise the results in graphical, Web-based components available in the
EOPEN User Portal. These workflows integrate steps (processes) that are generic enough to
be re-configured without requiring further software development effort. For example, the
manner EO products metadata is transformed into Linked Data is entirely controlled by
mapping rules expressed in RML, storing and querying Linked Data can be done in graph
databases deployed locally in the EOPEN Platform but also accessible remotely on the
Internet, Linked Data is obtained using standard SPARQL queries that can be rendered
on-the-fly, and visualisation components can be generic enough to display the data that is
formatted as tables or graphs.

A reason the result of this work has not been formally integrated in the EOPEN Pilot Use
Cases is that it was not clear at the beginning, when the user requirements have been
elicited, what could be the benefit of using Linked Data, and Linked EO Data in particular, in
the use cases. Chapter 5 provides ideas for integrating Linked Data in use cases, possibly in
future activities.

D5.3 – V1.0

Page 52

7 REFERENCES

[1] Bereta, K., Smeros, P. and Koubarakis, M., 2013. Representation and Querying of
Valid Time of Triples in Linked Geospatial Data, 10th Extended Semantic Web
Conference (ESWC 2013). Montpellier, France. May 26-30, 2013.
http://www.strabon.di.uoa.gr/files/eswc2013.pdf

[2] Coene, Y., Gilles, M., Tran Minh, T., 2016, EO Metadata Discovery using Linked Data,
OGC Discussion Paper 16-074r0, version 0.2.0, 25/03/2016.

[3] Das, S., Sundara, S., Cyganiak, R., 2012, R2RM: RDB to RDF Mapping Language, W3C
Recommendation, 27/09/2012. https://www.w3.org/TR/r2rml/.

[4] Dimou, A. et al. 2014. RML: A generic language for integrated RDF mappings of
heterogeneous data. CEUR Workshop Proceedings, 2014. https://rml.io/specs/rml/

[5] Harris, S. and Seaborne, A. 2013. SPARQL 1.1 Query Language, W3C, 21/03/2013,
https://www.w3.org/TR/sparql11-query/.

[6] ISO/TC 211, 2012. Geographic Information -- Metadata -- XML schema
implementation -- Part 2: Extensions for imagery and gridded data. Reference:
ISO 19139-2:2012
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber
=57104

[7] Koubarakis, M. and Kyzirakos, K. 2010. Modeling and querying metadata in the
semantic sensor web: The model stRDF and the query language stSPARQL. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2010.

[8] Kyzirakos, K. et al. 2012. Strabon: A semantic geospatial DBMS. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012.

[9] Kyzirakos, K., Karpathiotakis M. and Koubarakis, M., 2012. Strabon: A Semantic
Geospatial DBMS, 11th International Semantic Web Conference (ISWC 2012), Boston,
USA, 11-15 November 2012. http://www.strabon.di.uoa.gr/files/iswc-strabon.pdf.

[10] Kyzirakos, K., Karpathiotakis, M., Bereta, K., Garbis, G., Nikolaou, C., Smeros, P.,
Giannakopoulou, S., Dogani, K., and Koubarakis, M., 2013. The Spatiotemporal RDF
Store Strabon, 13th International Symposium on Spatial and Temporal Databases
(SSTD 2013), Munich, Germany, August 21-23, 2013.
http://www.strabon.di.uoa.gr/files/sstd2013-demo.pdf

[11] Kyzirakos, K., Manegold, S. (CWI), Vlachopoulos, I., Savva, D., and Koubarakis, M.
(NKUA), 2014. GeoTriples: a Tool for Publishing GeospatialData as RDF Graphs Using
R2RML Mappings, TerraCognita 2014.
http://event.cwi.nl/terracognita2014/terra2014_3.pdf

[12] Kyzirakos, K. et al. 2018. GeoTriples: Transforming geospatial data into RDF graphs
using R2RML and RML mappings. Journal of Web Semantics. (2018).
DOI:https://doi.org/10.1016/j.websem.2018.08.003.

http://www.strabon.di.uoa.gr/files/eswc2013.pdf
https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml/
https://www.w3.org/TR/sparql11-query/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57104
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57104
http://www.strabon.di.uoa.gr/files/iswc-strabon.pdf
http://www.strabon.di.uoa.gr/files/sstd2013-demo.pdf
http://event.cwi.nl/terracognita2014/terra2014_3.pdf

D5.3 – V1.0

Page 53

[13] Open Geospatial Consortium, 2014. Earth Observation Metadata profile of
Observations & Measurements, Reference: OGC 10-157r4 Version 1.1, 10/06/2014
http://www.opengeospatial.org/standards/om

[14] Open Geospatial Consortium, 2011, OGC GeoSPARQL - A Geographic Query Language
for RDF Data, Reference OGC 11-052r4, version 1.0, 10/09/2012
https://www.ogc.org/standards/geosparql.

[15] Open Geospatial Consortium, 2015. OGC Observations and Measurements – JSON
implementation, reference: OGC 15-100r1, published 09/12/205,
https://portal.opengeospatial.org/files/64910

http://www.opengeospatial.org/standards/om
https://www.ogc.org/standards/geosparql
https://portal.opengeospatial.org/files/64910

D5.3 – V1.0

Page 54

Appendix A. Mapping Definitions

Not a single mapping definition may fit all the missions and product types. Indeed, this
happens when necessary values are not provided in the input data. In that case, the values
and the related triples must be hard-coded in the mapping rules. This is the case, for
example, for creating the "Platform" object using products metadata received from the
Umbrella Application. Because the results do not contain this information, a mapping
definition file must be created for each platform (or mission) and the space missions and
sensors information (e.g. "SENTINEL-1") must be hard-coded in it.

A second reason is that different sensors produce different types of products (e.g. radar and
optical images) and for each type there is a series of specific properties, such as the
polarisation of the radar signal and the cloud coverage in optical images.

A.1. Sentinel-1 (SAR) Product Metadata Mapping Definition (RML)

Table 15 contains the RML-encoded mapping rules for converting products metadata
obtained from the Umbrella Application into Linked Data. The mapping rules intentionally
omit the quicklook related objects (provided separately in Appendix A.2, page 59) as these
contain null values in the search result document.

Table 15 – Sentinel-1 Product Mapping Rules

@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix rml: <http://semweb.mmlab.be/ns/rml#> .

@prefix rrx: <http://www.w3.org/ns/r2rml-ext#> .

@prefix rrxf: <http://www.w3.org/ns/r2rml-ext/functions/def/> .

@prefix ql: <http://semweb.mmlab.be/ns/ql#> .

@prefix mail: <http://example.com/mail#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix geo: <http://www.opengis.net/ont/geosparql#> .

@prefix geof: <http://www.opengis.net/def/function/geosparql/> .

@prefix eop: <http://www.opengis.net/eop/2.1#> .

@prefix opt: <http://www.opengis.net/opt/2.1#> .

@prefix sar: <http://www.opengis.net/sar/2.1#>

@prefix om: <http://www.opengis.net/om/2.0#> .

@prefix ical: <http://www.w3.org/2002/12/cal/ical#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix oml: <http://def.seegrid.csiro.au/ontology/om/om-lite#> .

@prefix mrss: <http://search.yahoo.com/mrss/> .

@prefix ows: <http://www.opengis.net/ows/2.0#> .

@prefix xlink: <http://www.w3.org/1999/xlink#> .

@prefix dcat: <http://www.w3.org/ns/dcat#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix gmd: <http://www.isotc211.org/2005/gmd> .

@prefix gml: <http://www.opengis.net/gml/3.2#> .

@prefix gcmd: <http://gcmdservices.gsfc.nasa.gov/kms/concept/> .

@prefix media: <http://search.yahoo.com/mrss/> .

<#Observation>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI

 rr:subjectMap [

 rr:template "http://www.w3.org/ns/dcat#Dataset/{uuid}"

];

D5.3 – V1.0

Page 55

 # Hard-coded triple: <subject> rdf:type dcat:Dataset

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object dcat:Dataset

];

 # Hard-coded triple: <subject> rdf:type oml:Observation

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:Observation

];

 # Hard-coded: <subject> eop:sensorType "RADAR"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:sensorType;

 rr:object "RADAR"

];

 # Triple: <subbject> dct:description "{uuid}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate dct:description;

 rr:objectMap [

 rr:template "EO Product record {uuid}, with filenname {filename} from the Umbrella

Application (source: {source})";

 rr:datatype xsd:string

]

];

 # Triple: <subject> dct:identifier "{identifier}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate dct:identifier;

 rr:objectMap [

 rml:reference "identifier"

]

];

 # Triple: <subject> dct:spatial "{geom_footprint}"^^geo:wktLiteral

 rr:predicateObjectMap [

 rr:predicate dct:spatial;

 rr:objectMap [

 rrx:function rrxf:asWKT;

 rrx:argumentMap([rml:reference "geom_footprint"]);

 rr:datatype geo:wktLiteral;

];

];

 # Triple:

 # <subject> eop:processingDate "{ingestion_date}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:processingDate;

 #rr:predicate dct:issued;

 rr:objectMap [

 rml:reference "ingestion_date";

 rr:datatype xsd:dateTime

]

];

 # Triple: <subject> eop:productType "{poduct_type}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:productType;

 rr:objectMap [

 rml:reference "product_type";

 rr:datatype xsd:string

]

];

 # Triple: <subject> eop:orbitDirection "DESCENDING"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitDirection;

 rr:objectMap [

 rml:reference "pass_direction";

 rr:datatype xsd:string

]

];

D5.3 – V1.0

Page 56

 # Link to Phenomenon Time object (see Table 4, below)

 # Triple: <subject> oml:phenomenonTime <#PhenomenonTime>

 rr:predicateObjectMap [

 rr:predicate oml:phenomenonTime;

 rr:objectMap [

 rr:parentTriplesMap <#PhenomenonTime>

];

];

 # Link to the Process object (see Table 5, below)

 # Triple: <subject> oml:procedure <#Process>

 rr:predicateObjectMap [

 rr:predicate oml:procedure;

 rr:objectMap [

 rr:parentTriplesMap <#Process>

];

];

 # Link to the Result object (see Table 8, below)

 # Triple: <subject> oml:result <#Result>

 rr:predicateObjectMap [

 rr:predicate oml:result;

 rr:objectMap [

 rr:parentTriplesMap <#Result>

];

];

.

<#PhenomenonTime>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/phenomenonTime"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:TemporalObject

];

 # Triple: <subject> ical:dtstart "{sensing_date}"^^xsd:dateTime

 rr:predicateObjectMap [

 rr:predicate ical:dtstart;

 rr:objectMap [

 rml:reference "sensing_date";

 rr:datatype xsd:dateTime

]

];

 # Triple: <subject> ical:dtend "{sensing_date}"^^xsd:dateTime

 # The Umbrella App. does not provide the sensing end timestamp.

 rr:predicateObjectMap [

 rr:predicate ical:dtend;

 rr:objectMap [

 rml:reference "sensing_date";

 rr:datatype xsd:dateTime

]

];

.

<#Process>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

D5.3 – V1.0

Page 57

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/process"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object oml:Process

];

 # Triple: <subject> eop:orbitDirection "{pass_direction}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitDirection;

 rr:objectMap [

 rml:reference "pass_direction";

 rr:datatype xsd:string

]

];

 # Triple: <subject> eop:swathIdentifier "{swath}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:swathIdentifier;

 rr:objectMap [

 rml:reference "swath";

 rr:datatype xsd:string

]

];

 # Triple: <subject> eop:orbitNumber "{orbit_number}"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:orbitNumber;

 rr:objectMap [

 rml:reference "orbit_number";

 rr:datatype xsd:integer

]

];

 # Hard-coded: <subject> eop:sensorType "RADAR"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate eop:sensorType;

 rr:object "RADAR"

];

 # Triple: <subject> sar:polarisationMode "IW"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate sar:polarisationMode;

 rr:objectMap [

 rml:reference "sensor_operational_mode";

 rr:datatype xsd:string

]

];

 # Triple: <subject> sar:polarisationChannels "VV VH"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate sar:polarisationChannels;

 rr:objectMap [

 rml:reference "polarization";

 rr:datatype xsd:string

]

];

 # Link to Platform object

 # Triple: <subject> eop:platform <#Platform>

 rr:predicateObjectMap [

 rr:predicate eop:platform;

 rr:objectMap [

 rr:parentTriplesMap <#Platform>;

];

];

 # Link to the Instrument object

 # Triple: <subject> eop:instrument <#Instrument>

 rr:predicateObjectMap [

 rr:predicate eop:instrument;

 rr:objectMap [

D5.3 – V1.0

Page 58

 rr:parentTriplesMap <#Instrument>;

];

];

.

<#Platform>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the Platform URI (from NASA GCMD concepts)

 rr:subjectMap [

 rr:constant gcmd:007c3084-89db-458e-8387-14e192b6cb8e;

];

 # Hard-coded: <subject> skos:altLabel "SENTINEL-1"^^xsd:string

 # Use other RML templates to convert Sentinel-2, etc. metadata

 rr:predicateObjectMap [

 rr:predicate skos:altLabel;

 rr:object "SENTINEL-1"

];

.

<#Instrument>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the Instrument URI (from NASA GCMD concepts)

 rr:subjectMap [

 rr:constant gcmd:1c53d85e-3792-4081-9748-192fd3140aa6;

];

 # Triple: <subject> skos:altLabel "SAR-C SAR"^^xsd:string

 # Use other RML templates to convert Sentinel-2, etc. metadata

 rr:predicateObjectMap [

 rr:predicate skos:altLabel;

 rr:objectMap [

 rml:reference "instrument";

 rr:datatype xsd:string

]

];

.

<#Result>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/result"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object rdf:Class

];

 # Link to Media Content object (see Table 9, below)

 # Triple: <subject> media:group <#Content>

 rr:predicateObjectMap [

 rr:predicate media:group;

 rr:objectMap [

 rr:parentTriplesMap <#Content>;

];

D5.3 – V1.0

Page 59

];

.

<#Content>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{url_download}"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Content

];

 # Hard-coded media type

 # <subject> media:type "application/binary"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:type;

 rr:object "application/binary"

];

 # Hard-coded media expression

 # <subject> media:expression "full"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:expression;

 rr:object "full"

];

 # Triple: <subject> media:fileSize “{size}”^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:fileSize;

 rr:objectMap [

 rml:reference "size";

 rr:datatype xsd:string

]

];

.

A.2. Quicklook Object Properties Mapping Definition (RML)

Table 16 contains the rules to be added to the main rules, above, to add quicklook
information to the generated Linked Data.

Table 16 – Quicklook Objects Mapping Rules

To be inserted in the <#Result> mapping graph:

 # Link to Media Quicklook object (see Table 10, below)

 # Triple: <subject> media:group <#QuicklookContent>

 rr:predicateObjectMap [

 rr:predicate media:group;

 rr:objectMap [

 rr:parentTriplesMap <#QuicklookContent>;

];

];

D5.3 – V1.0

Page 60

Quicklook Content and Category:

<#QuicklookContent>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{quicklook}"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Content

];

 # Hard-coded: <subject> media:type "image/jpeg"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:type;

 rr:object "image/jpeg"

];

 # Hard-coded: <subject> media:medium "image"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:medium;

 rr:object "image"

];

 # Hard-coded: <subject> media:expression "sample"^^xsd:string

 rr:predicateObjectMap [

 rr:predicate media:expression;

 rr:object "sample"

];

 # Link to Media Category object

 # Triple: <subject> media:category <#QuicklookCategory>

 rr:predicateObjectMap [

 rr:predicate media:category;

 rr:objectMap [

 rr:parentTriplesMap <#QuicklookCategory>;

];

];

.

<#QuicklookCategory>

 rml:logicalSource [

 rml:source "${input_file}";

 rml:referenceFormulation ql:JSONPath;

 rml:iterator "$.results"

];

 # Specify the subject URI and RDF type

 rr:subjectMap [

 rr:template "{source}/{uuid}/result/quicklook/category"

];

 rr:predicateObjectMap [

 rr:predicate rdf:type;

 rr:object media:Category

];

 # Hard-coded: <subject> rdf:about "http://[...]/1.0#QUICKLOOK"

 rr:predicateObjectMap [

 rr:predicate rdf:about;

 rr:object "http://www.opengis.net/spec/EOMPOM/1.0#QUICKLOOK"

];

.

	1 Introduction
	2 Relevant Requirements
	3 Linked Open EO Data
	3.1 Introduction
	3.2 Tools and Technologies
	3.2.1 Linked Data and RDF Graphs
	3.2.2 Graph Databases
	3.2.3 SPARQL and GeoSPARQL
	3.2.4 R2RML and RML
	3.2.5 GeoTriples
	3.2.6 Strabon
	3.2.7 GraphDB

	3.3 Applicable Ontologies

	4 Linked Open EO Data in the EOPEN Platform
	4.1 Available Earth Observation Data
	4.2 Services
	4.2.1 Umbrella Application of Sentinel Hubs
	4.2.2 GraphDB
	4.2.3 Strabon

	4.3 Processes
	4.3.1 Any to RDF Converter
	4.3.2 Store in Strabon
	4.3.3 Query Strabon
	4.3.4 Query GraphDB
	4.3.5 Query RDF File
	4.3.6 RDF Merger

	4.4 Workflows
	4.4.1 EO Products Metadata Conversion to Linked Data and Storage in Strabon
	4.4.1.1 Workflow Description
	4.4.1.2 Conversion of the products metadata
	4.4.1.3 Workflow Execution Report

	4.4.2 Interoperable semantic query to retrieve EO and non-EO data
	4.4.2.1 Workflow Description
	4.4.2.2 Workflow Execution Report

	4.5 Visualisation of RDF Graphs and SPARQL Results
	4.5.1 Visualisation of RDF Graphs
	4.5.2 RDF Graphs with Spatio-Temporal Dimensions
	4.5.3 Generic SPARQL Results Table

	5 Possible Uses
	6 Conclusions
	7 References

