

 Page 1

EOPEN
opEn interOperable Platform for unified access and analysis of Earth

observatioN data

H2020-776019

D5.1

The EOPEN ontology and semantic
reasoning support

Dissemination level: Public

Contractual date of delivery: Month 19, 31 May 2019

Actual date of delivery: Month 19, 28 May 2019

Workpackage: WP5 Semantic representation and the EOPEN ontology

Task: T5.1 The EOPEN ontology, T5.2 Linked open EO data,
T5.3 Reasoning for decision support

Type: Other

Approval Status: Approved

Version: 1.0

Number of pages: 55

 Page 2

Filename: d5.1-The EOPEN ontology and semantic reasoning
support_v1.0.docx

Abstract

This deliverable documents the semantic models for mapping the EOPEN-pertinent
conceptualisations on ontology-related constructs. In addition, it describes the functionality
of the first version of semantic integration and reasoning techniques. First, the purpose,
scope, intended users and the requirements of the ontologies as identified at this phase of
the project are described. Their specification has been driven by the WP2 initial user
requirements identified for the individual scenarios, as well as by the dependencies incurring
from the interaction with the WP3 and WP4 analysis components and the WP6 functionality
aspects. Second, the literature is reviewed, covering state-of-the-art languages for formal
knowledge representation, existing ontologies covering domains and requirements relevant
to those of EOPEN, and methods pertinent to the extraction of location and organisation
entities encountered in user tweets. Third, the current status of the EOPEN ontologies and
tools is described, discussing the main entities they comprise. Fourth, the basic principles
that underpin the first preliminary version of the WP5 reasoning framework towards
reasoning and interpretation are described. The report also describes the progress on
developing the Linked Data infrastructure to connect EO and non-EO data. Last, the report
presents examples of the created annotation models.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

co-funded by the European Union

D5.1 – V1.0

Page 3

History

Version Date Reason Revised by Approved
by

0.1 03/04/2019 ToC Georgios Meditskos,
Stefanos Vrochidis,
Ioannis Kompatsiaris

0.2 02/05/2019 Contribution to SoA
and methodology
sections

Georgios Meditskos

0.3 15/05/2019 Contribution to
Ontology sections

Georgios Meditskos

0.4 15/05/2019 Contribution to
localisation section

Ilias Gialampoukidis

0.5 16/05/2019 Contribution to EO data
section

Bernard Valentin, Leslie
Gale

0.6 17/05/2019 Integration of different
sections

Stefanos Vrochidis

0.7 20/05/2019 Final version for
internal review

Georgios Meditskos

0.8 22/05/2019 Internal review Vasileios
Sitokonstantinou

1.0 24/05/2019 Final version Ioannis Kompatsiaris

 29/05/2019 G. Vingione

Author list

Organisation Name Contact Information

SPACEAPPS Bernard Valentin bernard.valentin@spaceapplications.com

SPACEAPPS Leslie Gale leslie.gale@spaceapplications.com

CERTH Georgios Meditskos gmedisk@iti.gr

CERTH Ilias Gialampoukidis heliasgj@iti.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

CERTH Ioannis Kompatsiaris ikom@iti.gr

D5.1 – V1.0

Page 4

Executive Summary

The present deliverable reports on the work carried out within T5.1, T5.2 and T5.3, relevant
to the development of the EOPEN ontologies and the representation and mapping of
content on ontological entities (T5.1). In addition, it describes the first preliminary
framework towards reasoning (T5.3) and elaborates on the roadmap for linking of open EO
and non-EO data (T5.2).

More specifically, the present deliverable presents the current content of the EOPEN
ontologies and the methodology adopted to build them. Based on the requirements set
forth by WP2 and the dependencies incurring from the interaction with the other WPs, the
purpose, scope, intended users and uses, and the requirements of the EOPEN ontologies
were identified. These specifications, along with the modelling insights from the relevant
literature, served as guidelines for building the first version of the EOPEN ontologies that
currently comprises modules for capturing the analysis results (metadata) of social media
analysis (non-EO data), such as topics and localisation.

In addition, we present a preliminary version of the reasoning layer whose purpose is to
enrich the supported semantics and metadata both at the terminological level, by defining
additional class and property axioms, and at the assertional level by incorporating inference
rules. The additional inference capabilities will afford the contextual enrichment of the
knowledge graphs that will be useful at query-time, i.e. for context-aware tweet retrieval.
Finally, a roadmap is presented on how EO and non-EO will be interlinked in the knowledge
base in order to facilitate advanced context awareness and support the modelling and
reasoning requirements set in the project.

The work presented within this document presents the preliminary version of the EOPEN
ontologies, reasoning and interpretation framework. More elaborate ontology-based
interpretation and reasoning tasks will be tackled in future versions of the framework and
reported in upcoming deliverables.

D5.1 – V1.0

Page 5

Abbreviations and Acronyms

CQ
CRF
DL
DLP
HMM
KB
LSTM
NER
OGC
ORSD

OTK
OWL
RDF

RML
RNN
SPIN
SVM
SWRL
SWRL
UPON
WGS

Competency Questions

Conditional Random Fields

Description Logic

Description Logic Programs

Hidden Markov Models

Knowledge Base

Long Short-Term Memory

named entity recognition

Open Geospatial Consortium

Ontology Requirements Specification Document

On-To-Knowledge

Web Ontology Language

Resource Description Framework

RDF Mapping language

recurrent neural networks

SPARQL Inferencing Notation

Support Vector Machine

Semantic Web Rule Language

Semantic Web Rule Language

United Process for Ontologies

World Geodetic System

D5.1 – V1.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 METHODOLOGY FOR MODELLING REQUIREMENTS .. 11

2.1 Ontology development 101 methodology .. 11

3 USER REQUIREMENTS RELEVANT TO ONTOLOGIES AND REASONING 12

4 ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT .. 13

5 STATE OF THE ART ... 17

5.1 Web Ontology Language .. 17
5.1.1 DL Reasoning .. 17
5.1.2 DL reasoning services ... 18
5.1.3 OWL and OWL 2 ... 19
5.1.4 Rules ... 20

5.2 Ontologies relevant to the EOPEN domain ... 21
5.2.1 Geospatial data representing, querying and saving .. 21
5.2.2 Data transformation to RDF ... 22
5.2.3 Geospatial tools ... 24

5.3 Annotation models .. 26
5.3.1 Web Annotation Data Model ... 27

5.4 Localisation ... 28

6 EOPEN ONTOLOGY AND ANNOTATION MODEL .. 29

6.1 EOPEN Annotation Model .. 29
6.1.1 EOPEN Annotation Classes ... 30

6.2 Representing Location ... 31

6.3 Linking open EO and non-EO data .. 32

7 SEMANTIC REASONING FRAMEWORK .. 35

7.1 Localisation ... 35
7.1.1 Methodology .. 35
7.1.2 Datasets ... 37
7.1.3 Network parameters and training ... 38
7.1.4 Results .. 39

D5.1 – V1.0

Page 7

7.2 Semantic search enrichment .. 41

7.3 Rules ... 43
7.3.1 Rules ... 44
7.3.2 Validation ... 45

8 ONTOLOGY VALIDATION ... 46

9 CONCLUSIONS ... 50

REFERENCES ... 51

D5.1 – V1.0

Page 8

1 INTRODUCTION

One of the cardinal objectives of WP5 is to provide the framework for encoding, aggregating
(T5.1), semantically interlinking (T5.2) and analysing information (T5.2) relevant to the
EOPEN application domain. In particular, WP5 provides the knowledge structures and
vocabularies (ontologies) for defining a flexible and modular ontology-based framework for
representing (a) Earth Observation, (b) meteorological and climate information, (c) social
media information, (d) domain-specific aspects (e.g. floods, food security). The ontological
framework will consist of a network of interconnected ontologies, along with a set of
appropriate tools for populating the ontologies. The models created will constitute the
foundations for the reasoning mechanisms. The reasoning framework will take into account
underlying context coming from other EOPEN modules as well as domain knowledge.

The logical dependencies of WP5 with the other WPs of the EOPEN project are depicted in
Figure 1. The figure also depicts the dependencies with WP2, WP6 and WP7 relevant to the
development of the modules that will be integrated in the system and the feedback needed
from the users with respect to requirements and evaluation.

In order to promote interoperability, extensibility and sharing, WP5 reuses and extends
existing standards for defining the vocabulary of the annotations, as well as the patterns for
associating these vocabularies with the generated assets. More specifically, the metadata
vocabularies are defined in the Web Ontology Language (OWL 21 [12]), the W3C standard for
defining and sharing ontologies. Similarly, the metadata are associated with assets using the
Web Annotation Data Model [47], which provides an extensible and interoperable
framework for expressing annotations. This model was published by the W3C Web
Annotation Working Group as a Recommendation (since 23 February 2017), describing a
common approach to express annotations in a manner that is simple and convenient, while
at the same time enables more complex requirements. For geospatial data, WP5 capitalises
on GeoSPARQL [39] an extension of SPARQL which is used to offer representation and

1 https://www.w3.org/TR/owl-profiles/

Figure 1 Logical dependencies of WP5 with the other WPs

D5.1 – V1.0

Page 9

querying in geospatial data. This standard was proposed by Open Geospatial Consortium
(OGC).

The population of the EOPEN ontologies is done automatically by mapping the information
provided as input by other components of the system. To this end, WP5 develops the
necessary algorithms and interfaces for the structural and semantic mapping of data among
different schemas and vocabularies, creating interlinked RDF-based knowledge structures
pertinent to the assets derived by the EOPEN modules. For geospatial data, we use
GeoTriples [24], otherwise the mappings are performed procedurally by custom-developed
services.

Finally, WP5 provides the reasoning layer, whose purpose is to address WP5’s reasoning
requirements, in the form of ontology-based axiomatisations (e.g. complex class descriptions
and property axioms), inference rules and data-driven analytics (e.g. for tweet localisation).
The underlying reasoning techniques will afford the derivation of data- and knowledge-
driven interpretations, enabling the system to abstract from incoming information and
enrich the underlying knowledge graphs. This combination of semantically rich and
interlinked knowledge graphs will foster the retrieval of data based on semantic
relationships and not simply on keyword-based search.

Figure 2 presents the conceptual architecture of WP5 that consists of the following entities:

• Knowledge Base (KB), that provides native RDF storage and querying services

• Population, which implements the mapping services of input provided by other
components, implementing linked data design principles

• Reasoning and context enrichment, which semantically enriches the content of the
KB

• Localisation for extracting locations mentioned in tweets

• Linked Data, which implements linked data design principles to further enrich the
derived knowledge

The remainder of this document is structured as follows: Section 2 overviews the adopted
methodology for the creation of the EOPEN ontologies. Section 3 describes the user
requirements that are relevant to WP5 modelling and reasoning framework. Section 4
reports the modelling specifications of the EOPEN ontologies. Section 5 reviews the relevant
literature for reasoning, ontologies, named entity recognition and annotation models.
Section 6 presents the first version of the EOPEN ontologies guided by the specifications
(section 4), along with the modelling insights derived from the literature analysis (section 5).
Section 7 describes the basic principles that underpin the preliminary version of WP5’s
reasoning framework towards intelligent reasoning, context enrichment and localisation
services. Section 8 presents how the created models are applied on a set of examples for
validation purposes, while Section 9 discusses the results and concludes the document.

D5.1 – V1.0

Page 10

Figure 2 Conceptual architecture of the modules involved in WP5

D5.1 – V1.0

Page 11

2 METHODOLOGY FOR MODELLING REQUIREMENTS

2.1 Ontology development 101 methodology

There are many ways to model a domain using ontologies and the ontology development is
essentially an iterative process. In this sense, there are several methodologies for ontological
engineering such as On-To-Knowledge (OTK) [53], METHONTOLOGY [10], United Process for
Ontologies (UPON) [34] and Ontology Development 101 [35]. Most of these methodologies
introduce common features and development guidelines.

For the purposes of the EOPEN ontological framework, we adopted the methodology of
Ontology Development 101 which consists of the following iterative steps:

Step 1. Determination of the domain and scope of the ontology
Step 2. Reuse of existing ontologies
Step 3. Enumeration of important terms
Step 4. Definition of the classes and the class hierarchy
Step 5. Definition of the properties
Step 6. Creation of instances.

In literature, the determination of the domain and scope of the ontology can be
documented in a template-based report called “Ontology Requirements Specification
Document” (ORSD) [55]. This document allows the systematic specification of “why the
ontology is being built”, “what its intended uses are”, “who the end-users are”, and “which
requirements the ontology should fulfil”. In particular, the ORSD report contains the
following fields:

1. Purpose: the main general goal of the ontology (i.e. how the ontology will be used in
EOPEN)

2. Scope: the general coverage and the degree of detail of the ontology
3. Implementation language: the formal language of the ontology
4. Intended end-users: the intended end-users expected for the ontology
5. Intended uses: the intended uses expected for the ontology
6. Ontology requirements

a. Non-functional requirements: the general requirements or aspects that the ontology
should fulfil, including optional properties for each requirement

b. Functional requirements: the content specific requirements that the ontology should
fulfil in the form of groups of competency questions and their answers, including
optional priorities for each group and for each competency questions

7. Pre- Glossary of terms
a. Terms from competency questions: the list of items included in the competency

questions and their frequencies
b. Terms from answers: the list of terms included in the answers and their frequencies
c. Objects: the list of objects included in the competency questions and their answers

Before presenting the EOPEN ORSD (section 4), we outline the WP5 relevant application
context within which the EOPEN ontology is deployed (section 3).

D5.1 – V1.0

Page 12

3 USER REQUIREMENTS RELEVANT TO ONTOLOGIES AND
REASONING

This section presents the application context relevant to WP5, describing relevant user
requirements that drive the development of the EOPEN modelling and reasoning framework.
To this end, we have investigated the description of the context and the users for each
scenario, as well as the requirements that have been presented in D2.2 “User
requirements”. These requirements are translated into technical requirement in D6.1
“System Requirements and Architecture”. Table 1 presents the user requirements that are
relevant to the WP5 representation and reasoning framework, briefly describing the main
functionalities and services that need to be supported.

Table 1 User requirements relevant to WP5 representation and reasoning framework

User
Requirement

ID (D2.2)
Description WP5 Relevance / Dependency

PUC1_GA2
As an environmental manager
I want to retrieve real-time
data

• Support searching functionality over
the KB to retrieve recently collected
metadata

PUC1_GA3
As an environmental manager
I want to retrieve semantic
information

• Support searching functionality over
the KB with the collected metadata

PUC1_GA7
As an environmental manager
I want to retrieve the history
of each event

• Support searching functionality and
interface over the KB to get historical
metadata which refer to an event

PUC2_GB4
As an administrator I want to
access and manage satellite
data

• Support searching functionality over
the KB with the collected metadata

• Provide the ability to manage the
metadata over the KB

PUC3_GC2
As an administrator I want to
easy access and manage the
datasets

• Support searching functionality over
the KB with the collected metadata

• Provide the ability to manage the
metadata over the KB

PUC3_GC5
As an administrator I want to
select an area of interest

• Provide the ability to retrieve the
collected metadata which refer to an
area of interest from the KB

PUC3_GC7
As an administrator I want to
browse historical operations

• Support searching functionality and
interface over the KB to find the
history of metadata

PUC3_GC12
As a user I want to retrieve
relevant tweets with specific
keywords

• Support searching functionality and
interface over the KB to get metadata
that contain specific keywords

D5.1 – V1.0

Page 13

4 ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT

This section presents the ORSD which provides the specification of the EOPEN ontological
framework. The ORSD may be further elaborated and extended as the system functionalities
will evolve to take into account hidden and unrevealed aspects that are not covered by the
current ontology requirements

EOPEN ORSD

1 Purpose

 The purpose of the EOPEN representation framework is to provide the ontological
structures and vocabularies (ontologies) to capture the results of the EOPEN
analysis modules in a reusable and interoperable manner. To this end, the
ontological framework will provide the annotation model needed in order to
support data modelling, integration and reasoning over the distilled information.
These include:

• Constructs for capturing metadata of non-EOP data, such as tweet-related
information, event detection, etc.

• A structured model and format to enable annotations and assertions to be
defined, shared and reused across both within the EOPEN application
context but also within different hardware and software platforms.

2 Scope

 The EOPEN ontology has to formally capture:

• Social media information derived from twitter crawling and results
analysing.

• Localisation information derived from the location extracted from the
tweet.

• Topic information derived from the combination and analysis of the
extracted information.

• Events information derived from the event detection analysis.

• Roads, rail and waterway information derived from satellite images.

• Rice crop information derived from satellite images.

A key design choice underpinning the engineering of the EOPEN ontologies is the
adherence to a pattern-based approach, so as to capitalise on a modular,
extensible and interoperable framework for expressing annotations and achieve a
better degree of knowledge sharing, reuse and interoperability.

3 Implementation Language

 The ontology will be implemented in OWL 2 [12], the officially recommended
language by W3C for knowledge representation in the Semantic Web.

4 Intended End-Users

 The EOPEN system considers different types of end users depending on the
application context, who will interact with the generated knowledge through

D5.1 – V1.0

Page 14

authoring tools:

• PUC1: Administration, related to civil protection and environment

Administration offices and firefighters: Administration offices related to civil
protection or environmental issues and firefighters who want to be aware of
real-time events and historical data of events to manage critical issues (eg.
fire, flood).

• PUC2: Decision making, related to food security in South Korea

Research Institutes and Science Centres: Korea Rural Economic Institute and
the National Institute of Agricultural Science who want to access food security
related information such as rice maps and rice yield estimates. KREI and NIAS
then share such relevant research findings and needs of producers and
consumers to the government institutes which then deliver it to the Congress
of South Korea.

• PUC3: System repairs and reindeer herding environments

Government agencies and reindeer researchers: Government agencies and
reindeer researchers who want to access data to manage system repairs (e.g.
road, rail and waterway) or select the ideal environment for reindeer herding.

5 Ontology Requirements

 Non-functional requirements

 NFR1. The ontology should adopt available standards whenever possible and
reuse existing ontologies and vocabularies

 Functional requirements: Groups of competency questions

 The list of Competency Questions (CQ) below has been derived by studying the
Pilot Use Case scenarios and user requirements. The questions have been also
elicited through the direct interaction with technical partners. To this end, a
simulation example has been carried out in order to collect additional technical
and user-related requirements that drive the development of the annotation
models.

Tweets

CQ1 Which is the identifier of the tweet?
CQ2 Which is the tweet URL?
CQ3 Is the tweet a top ranked tweet?
CQ4 Which is the latitude of the tweet?
CQ5 Which is the longitude of the tweet?
CQ6 In which city does the tweet refer to?
CQ7 Which is the location of the user who wrote the tweet?
CQ8 Which is the dbpedia URL for the location of the user?
CQ9 Which is the dbpedia URL for the location where the tweet refers to?
CQ10 Which are the labels found in the tweet?
CQ11 Which is the accuracy of each label?
CQ12 Which is the name of each label?

D5.1 – V1.0

Page 15

CQ13 Which is the annotation of a tweet?
CQ14 In which cluster does the label belong?
CQ15 What other labels belong in the same cluster?
CQ16 In which collection does the annotation belong to?
CQ17 What other annotations are part of this collection?
CQ18 Which is the resource that the annotation is connected with?
CQ19 Which is the cluster annotation of a collection?
CQ20 Which is the cluster annotation of a cluster body?
CQ21 Which is the time of the tweet?
CQ22 Which is the date of the tweet?
CQ23 Which is the topic of the tweet?
CQ24 Which is the event of the tweet?
CQ25 What are the hashtags of the tweet?
CQ26 What are the mentions/tags of the tweet?
CQ27 Is there an image in the tweet?
CQ28 Is there a video in the tweet?
CQ29 Is there a URL in the tweet?
CQ30 How many people reposted the tweet?
CQ31 How many people marked the tweet as favorite?
CQ32 How many people replied to the tweet?
CQ33 How many people liked the tweet?
CQ34 How many followers does the user (who posted the tweet) have?
CQ35 Which is the user’s (who posted the tweet) profile URL?
CQ36 Which is the user’s (who posted the tweet) username?
CQ37 Are there any emojis in the tweet?

Events

CQ38 Which events were detected?
CQ39 Which is the geometry polygon the event refers to?
CQ40 Which is/are the point/-s the event refers to?
CQ41 Which words does the event contain?
Topics
CQ42 Which topics were detected?
CQ43 Which is the geometry polygon the topic refers to?
CQ44 Which is/are the point/-s the topic refers to?
CQ45 Which words does the topic contain?
CQ46 Which is the BabelSynset identifier for each term?
CQ47 Which is the BabelNet URL for each term?
CQ48 Which is the Babelfy source for each term?
CQ49 Which is the dbpedia URL for each term?
CQ50 Which is the Babelfy score for each term?
CQ51 Which is the Babelfy coherence score for each term?
CQ52 Which is the Babelfy global score for each term?
CQ53 Which is the WordNet identifier for each label in topic detection?
CQ54 Which is the level 1 hypernym WordNet identifier for each term?
CQ55 Which is the level 2 hypernym WordNet identifier for each term?

D5.1 – V1.0

Page 16

CQ56 Which is the level 3 hypernym WordNet identifier for each term?
CQ57 Is there another term with the same level 1 WordNet identifier?
CQ58 Is there another term with the same level 2 WordNet identifier?
CQ59 Is there another term with the same level 3 WordNet identifier?

Location

CQ60 What is the weather like in a location?
CQ61 What is the temperature of a location?
CQ62 What is the climate of a location?

Fields and policies

CQ63 Which is the identifier of the field?
CQ64 In which satellite image is the field depicted?
CQ65 Does the field contain rice?
CQ66 Does the field conform to the agricultural policies which are applicable in

this area?
CQ67 Does the field conform to environmental rules?
CQ68 Which is the geolocation of a field?

System repairs management

CQ69 Which is the identifier of the image?
CQ70 In which satellite image is the road depicted?
CQ71 Does the road need maintenance?
CQ72 Which is the geolocation of the road?
CQ73 In which satellite image is the rail depicted?
CQ74 Does the rail need maintenance?
CQ75 Which is the geolocation of the rail?
CQ76 In which satellite image is the waterway depicted?
CQ77 Does the waterway need maintenance?
CQ78 Which is the geolocation of the waterway?
CQ79 Is the image inside an area of interest?
CQ80 Which metadata refers to the area of interest?
CQ81 What is the history of an area of interest?

The competency questions cover a very exhaustive list of aspects relevant to the EOPEN
domain. Though the initial set of EOPEN ontologies will not cover this extended list and
depth of detail, they provide the modular structures that will enable the future extensibility
of the model.

D5.1 – V1.0

Page 17

5 STATE OF THE ART

This section provides an overview on the relevant state of the art with respect to knowledge
representation languages, already existing ontologies addressing project-relevant fields, as
well as natural language approaches to address the localisation task. More specifically, we
present the basics of Description Logic (DL) languages [2], on which the official W3C
recommendation for creating and sharing ontologies in the Web (OWL 2) is grounded, the
different OWL 2 species, as well as relevant rule-based languages. We then provide a briefly
review on the representative ontologies that have been proposed in the literature for
modelling core aspects relevant to the EOPEN application domain that fall into WP5’s
modelling requirements. Lastly, a brief presentation of the state-of-the-art in named entity
recognition (NER) is included, which demonstrates the developments that drive the inner
workings of the localisation procedure.

5.1 Web Ontology Language

In the literature, ontologies have been widely used as an effective way for modelling domain
information because they can represent and organise information, context and relationships
more accurately. In addition, they offer easy expandability by merging, expanding and
combining parts of existing ontologies into new ones.

Ontologies are models used to capture knowledge about some domain of interest. Formally
speaking, ontologies are explicit formal specifications of shared conceptualizations [16, 54].
They represent abstract views of the world including the objects, concepts, and other
entities that are assumed to exist in some area of interest, their properties and the
relationships that hold among them. Their expressivity and level of formalisation depend on
the knowledge representation language used.

Within the Semantic Web, which is an extension of the current Web that aims to establish a
common framework for sharing and reusing data across heterogeneous sources, ontologies
play a key role. The Semantic Web vision is to make the semantics of web resources explicit
by attaching to them metadata that describe meaning in a formal, machine-understandable
way. In this effort, the Web Ontology Language [6] has emerged as the official W3C
recommendation for creating and sharing ontologies on the Web. In the rest of this section,
we present the basics of Description Logic languages, on which OWL semantics are
grounded, the different OWL species, as well as relevant rule-based languages.

5.1.1 DL Reasoning

Description Logics [2] are a family of knowledge representation formalisms characterised by
logically grounded semantics and well-defined reasoning services. The main building blocks
are concepts representing sets of objects (e.g. Field), roles representing relationships
between objects (e.g. contains), and individuals representing specific objects (e.g.,
RiceCrop). Starting from atomic concepts, such as Field, arbitrary complex concepts can
be described through a rich set of constructors that define the conditions on concept

membership. For example, the concept hasNeighbour.Field describes those objects
that are related through the hasNeighbour role with an object from the concept Field;
intuitively, this corresponds to all those fields that are neighbours with at least one field. A
DL knowledge base K typically consists of a TBox T (terminological knowledge) and an ABox

D5.1 – V1.0

Page 18

A (assertional knowledge). The TBox contains axioms that capture the possible ways in which
objects of a domain can be associated. For example, the TBox axiom RiceCrop ⊑ Crop
asserts that all objects that belong to the concept RiceCrop, are members of the concept
Crop too. The ABox contains axioms that describe the real world entities through concept
and role assertions. For example, Field(field_id) and isLocated(field_id,Korea)
express that RiceCrop is a crop and it is located in Korea. Table 2 summarises the set of
terminological and assertional axioms.

Table 2 Terminological and assertional axioms

Name Syntax Semantics

Concept inclusion C ⊑ D C  D

Concept equality C ≡ D C = D

Role Equality R ≡ S R=S

Role inclusion R ⊑ S R S

Concept assertion C(α) α ∈ C

Role assertion R(α,b) (α, b) ∈ R

5.1.2 DL reasoning services

DLs come with a set of powerful reasoning services, for which efficient, sound and complete
reasoning algorithms with well understood computational properties are available. Example
state-of-the-art implementations include Pellet [50] Racer [17], Fact++ [56] and Hermit [11].

Assuming a DL knowledge base K = (T, A), typical reasoning services include:

• Subsumption: A concept C is subsumed by D in T (written T ⊨ C ⊑ D), iff C  D for all
interpretations .

• Equivalence: Two concepts C and D are equivalent in T (written T ⊨ C ≡ D) iff C  D
and D  C for all interpretations .

• Disjoint: A concept C is disjoint to a concept D in T iff in every interpretation  it holds
that C ≠ .

• Consistency: The ABox A is consistent w.r.t. T iff if there is an interpretation that is a
model of both A and T.

• Instance checking: The individual α is an instance of C (w.r.t. K) (written K ⊨ C(α)) iff
α ∈ C holds for all interpretations  of K.

• Realisation: The realisation of an instance α w.r.t. to K includes finding the most
specific concepts C for which a ∈ C holds for all interpretations  of K.

Hence, through subsumption one can derive the implicit taxonomic relations among the
concepts of a terminology. For example, given the axiom SownField ≡ Field ⊓

contains.Crop, one can infer that Field subsumes SownField.

Satisfiability and consistency checking are useful to determine whether a knowledge base is
meaningful at all. Satisfiability checking enables the identification of concepts for which it is
impossible to have members under any interpretation (for example, an unsatisfiable
concept, though trivial, is SownField ⊓  SownField). Consistency checking enables the

D5.1 – V1.0

Page 19

identification whether the set of assertions comprising the knowledge base is admissible
with respect to the terminological axioms. For example if EmptyField and SownField are
asserted as disjoint concepts, then the presence of both SownField(field_id) and
EmptyField(field_id) leads to inconsistency.

Instance checking denotes the task of finding whether a specific individual is an instance of a
given concept. Realisation of an individual, a more generic form of instance checking, returns
all (most specific) concepts from the knowledge base that a given individual is an instance of.
Its dual is the retrieval problem that given a specific concept C, it returns all individuals that
belong to this concept. This reasoning service is the central to realise the task of recognition
of situation types.

Falling under the classical logics paradigm, reasoning in DLs adopts the open-world
assumption. Intuitively, if a fact α holds only in a subset of the models of the knowledge base

KB, then we can conclude neither KB ⊨ α nor KB ⊨ α. For example, if the only available

knowledge regarding the owners of a field is the assertion isOwnedBy(Alice,field_id),
we cannot deduce based on it alone that no one else owns the field. In contrast, formalisms
adhering to the closed-world assumption make the common-sense conjecture that all
relevant information is explicitly known, so all unprovable facts should be assumed not to
hold. In our example, this amounts to concluding that Alice is the sole owner of this field.

Hence, closed-world reasoning can be intuitively understood as reasoning where from KB ⊨

α, one concludes KB ⊨ α. Such kind reasoning should not be confused however with closed

domain reasoning, which involves reasoning only over explicitly known individuals.

5.1.3 OWL and OWL 2

The OWL is a knowledge representation language widely used within the Semantic Web
community for creating ontologies. The design of OWL and particularly the formalisation of
the semantics and the choice of language constructors have been strongly influenced by DLs.
OWL comes in three dialects of increasing expressive power: OWL Lite, OWL DL and OWL
Full. OWF Full is the most expressive of the three: it neither imposes any constraints on the
use of OWL constructs, nor lifts the distinction between instances (individuals), properties
(roles) and classes (concepts). This high degree of expressiveness comes however at a price,
namely the loss of decidability that makes the language difficult to implement. As a result,
focus has been placed on the two decidable dialects, and particularly on OWL DL, which is
the more expressive of the two.

Despite the rich primitives provided for expressing concepts, OWL DL has often proven
insufficient to address the needs of practical applications. This limitation amounts to the DLs
style model theory used to formalise its semantics, and particularly the tree model property
[57] conditioning DLs decidability. As a consequence, OWL can model only domains where
objects are connected in a tree-like manner. This constraint is quite restrictive for many real-
world applications, including the ambient intelligence domain, which requires modelling
general relational structures.

Responding to this limitation and to other drawbacks that have been identified concerning
the use of OWL in different application contexts throughout the years, the W3C working
group produced OWL 2 [12]. OWL 2 is a revised extension of OWL, now commonly referred
to as OWL 1. It extends OWL 1 with qualified cardinality restrictions; hence one can assert

D5.1 – V1.0

Page 20

for example that a social activity is an activity that has more than one actor:
SocialActivity ≡ Activity ⊓ ≥ 2hasParticipant.Person.

Another prominent OWL 2 feature is the extended relational expressivity that is provided
through the introduction of complex property inclusion axioms (property chains). To
maintain decidability, a regularity restriction is imposed on such axioms that disallow the
definition of properties in a cyclic way. Hence, one can assert the inclusion axiom
locatedIn ○ containedIn ⊑ locatedIn making it possible to infer that if a person is
located for example in the bedroom of her house, then she is located in her house as well;
however, it is not allowed to use both the aforementioned axiom and the axiom
containedIn ○ locatedIn ⊑ containedIn as this leads to a cyclic dependency. Three
profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL, trade portions of expressive power for
efficiency of reasoning targeting different application scenarios.

5.1.4 Rules

To achieve decidability, DLs, and hence OWL, trade some expressiveness for efficiency of
reasoning. The tree-model property is one such example. It conditions the tree-shape
structure of models, ensuring decidability, but at the same time it severely restricts the way
variables and quantifiers can be used, dictating that a quantified variable must occur in a
property predicate along with the free variable. As a result, it is not possible to describe
classes whose instances are related to an anonymous individual through different property
paths. To leverage OWL’s limited relational expressivity and to overcome modelling
shortcomings that OWL alone would be insufficient to address, a significant body of research
has been devoted to the integration of OWL with rules.

A proposal towards this direction is the Semantic Web Rule Language (SWRL) [20], in which
rules are interpreted under the classical first order logic semantics. Allowing concept and
role predicates to occur in the head and the body of a rule without any restrictions, SWRL
maximises the interaction between the OWL and rule components, but at the same time
renders the combination undecidable. To regain decidability, several proposals have
explored syntactic restrictions on rules [31, 46] as well as their expressive intersection of
Description Logic Programs (DLP) [15]. The DL-safe rules introduced for example in [31]
impose that rule semantics apply only over known individuals. It is worth noting that in
practice DL reasoners providing support for SWRL actually implement a subset of SWRL
based on this notion of DL-safety.

Taking a different perspective, a number of approaches have investigated the combination
of ontologies and rules based on mappings of a subset of the ontology semantics on rule
engines. For instance, [21] defines the pD* semantics as a weakened variant of OWL Full,
e.g., classes can be also instances, and they are extended to apply to a larger subset of the
OWL vocabulary, using 23 entailments and 2 inconsistency rules. Inspired by the pD*
entailments and DLP, the semantics of the OWL 2 RL profile is realised as a partial
axiomatisation of the OWL 2 semantics in the form of first-order implications, known as OWL
2 RL/RDF rules. User-defined rules on top of the ontology allow expressing richer semantic
relations that lie beyond OWL’s expressive capabilities, and couple ontological and rule
knowledge.

D5.1 – V1.0

Page 21

SPARQL [18] is a declarative language recommended by the W3C for extracting and updating
information in RDF graphs. It is an expressive language that allows the description of quite
complex relations among entities. The semantics and complexity of the SPARQL query
language have been fairly studied theoretically, showing that SPARQL algebra has the same
expressive power as relational algebra [38] [19]. Although SPARQL is mostly known as a
query language for RDF, by using the CONSTRUCT graph pattern, it is able to define SPARQL
rules that can create new RDF data, combining existing RDF graphs into larger ones. Such
rules are defined in the interpretation layer in terms of a CONSTRUCT and a WHERE clause: the
former defines the graph patterns, i.e. the set of triple patterns that should be added to the
underlying RDF graph upon the successful pattern matching of the graphs in the WHERE
clause. The SPARQL Inferencing Notation (SPIN) [52] constitutes an effort to ease the
definition and execution of SPARQL rules on top of RDF graphs. In SPIN, SPARQL queries can
be stored as RDF triples together with any RDF domain model, enabling the linkage of RDF
resources with the associated SPARQL queries, as well as sharing and reuse of SPARQL
queries. SPIN supports the definition of SPARQL inference rules that can be used to derive
new RDF statements from existing ones through iterative rule application.

5.2 Ontologies relevant to the EOPEN domain

In this section we describe the languages and extensions which are used for representing
and querying geospatial data. We also describe some languages which transform data into
RDF format and some tools for handling geospatial information.

5.2.1 Geospatial data representing, querying and saving

Since geospatial data are available in many cases via the Web in linked open data cloud [24],
there comes the need to exploit them for decision making issues. This need emerged lately,
as in the past the data that were available did not contain any geospatial information. The
following languages are responsible for geospatial data representation and querying.

stRDF[23][24] is a new version of RDF for representing geospatial data that change over
time. It is based in the philosophy of constraint databases and more specifically CSQL. stRDF
means spatial/temporal RDF and is responsible for adding new datatypes to spatial and
temporal literals by extending RDF which represents only thematic metadata. The
development of stRDF contains two steps: development of sRDF and stRDF. sRDF is an RDF
extension which allows the representation of spatial data except from thematic. stRDF is an
RDF extension which allows the representation of thematic and spatial data with a temporal
dimension.

Table 3 An example of using stRDF in GeoNames data that represent information about the
greek town Olympia. Information contain data about geometry and burnt areas.

geonames:26 rdf:type dbpedia:Town.

geonames:26 geonames:name "Olympia".

geonames:26 strdf:hasGeometry "POLYGON((21 18,23 18,23 21,21 21,21 18));

<http://www.opengis.net/def/crs/EPSG/0/4326>"^^strdf:WKT.

noa:BA1 rdf:type noa:BurntArea;

D5.1 – V1.0

Page 22

stSPARQL[23][24] is a new version of SPARQL for representing geospatial data. It adds spatial
terms in SELECT, FILTER and HAVING and also supports update operations (INSERT, DELETE
and UPDATE) of stRDF triples. Spatial terms may be spatial literals, query variables
connected to spatial literals, results of set or geometric operations on spatial terms.
stSPARQL is the querying language which is associated with stRDF language.

Table 4 An example for returning the names of towns that have been affected by fires.

GeoSPARQL[24] is an extension of SPARQL which is used to offer representation and
querying in geospatial data. This standard was proposed by Open Geospatial
Consortium (OGC). It provides a vocabulary which can be used in geospatial RDF graphs and
SPARQL queries. The vocabulary contains three main classes: ogc:SpatialObject which
represents all feature and geometry objects that can be represented spatially, ogc:Feature
which represents all feature objects and ogc:Geometry which represents all geometry
objects. GeoSPARQL also offers an amount of properties for geometries handling in order to
investigate the topological relationships among them. For example, ogc:equals,
ogc:intersects, ogc:crosses, ogc:touches which return a Boolean value which corresponds to
the geometries equality, intersection etc, while others eg. ogcf:distance, ogcf:intersection,
ogcf:union return other value types (String, integer, double etc.) which correspond to the
distance, intersection points etc.

5.2.2 Data transformation to RDF

Another factor that needs attention is that a lot of the available data are in formats other
than RDF (eg. HTML). In order to exploit these data there comes the need to transform the
non-RDF data which are available on the web into RDF format. Many frameworks have been
developed lately for this scope and some of them are presented in this section. [4]

R2RML2[44] is a W3C recommendation language which creates mappings by using existing
relational data and converting to RDF data model. The structure and the vocabulary are

2 https://www.w3.org/TR/r2rml/

strdf:hasGeometry "POLYGON((0 0,0 2,2 2,2 0,0 0))"^^strdf:WKT.

noa:BA2 rdf:type noa:BurntArea;

strdf:hasGeometry "POLYGON((3 8,4 9,3 9,3 8))"^^strdf:WKT.

SELECT ?name

WHERE {

?t a dbpedia:Town;

geonames:name ?name;

strdf:hasGeometry ?tGeo.

?ba a noa:BurntArea;

strdf:hasGeometry ?baGeo.

FILTER(strdf:intersects(?tGeo,?baGeo))}

https://www.w3.org/TR/r2rml/

D5.1 – V1.0

Page 23

defined by the user. The input is a relational database which conforms to a specific database
schema. R2RML mappings are written in RDF Turtle syntax. R2RML mapping uses the logical
tables (base table, view or valid SQL query) to retrieve data from the relational database.
Triples map is a rule responsible for mapping the relational table to RDF by converting each
row of the logical table into triples. Triples map rule contains a subject map, which creates
all subjects IRIs from the logical table, and multiple predicate-object maps which consist of
predicate and object maps. The result of this procedure are triples which are exported by
the combination of subject, predicate and object maps.

Figure 3 R2RML mapping overview

RDF Mapping language (RML)3 [9][8] is a language responsible for converting data from
multiple non-RDF formats into RDF. RML gets as input formats like XML, JSON, CSV,
relational databases or RDF triplestores using SPARQL and creates a semantic representation
of them by creating the appropriate rules or mappings. It provides a vocabulary for data
defining while the user is able to define the iterator pattern about the way that the source
data should be accessed.

3 http://rml.io/

http://rml.io/

D5.1 – V1.0

Page 24

Figure 4 RML mapping overview

5.2.3 Geospatial tools

In this section we present some systems which are responsible for handling (converting,
saving, querying) geospatial data. The tools provide a more complete solution, with
enhanced functionality compared to the languages and standards that were presented in
previous sections.

Geosensor [42] is a web-based system which detects change detection from satellite images
using event detection from news items and social media content. Its architecture is based in
semantic web technologies and consists of 11 components divided in three layers: change
detection, event detection and semantic layer. Change detection layer is responsible for
images downloading (Image Aggregator), storing (Hadoop Distributed File System) and
change detecting (Change Detector) by computing pixels ratio from two images using the
change detection algorithm. Event detection layer combines each land cover with an event
and a possible explanation of that. In order to achieve that it scans specific news agencies
and social media to collect news (News Crawler), stores news data (Apache Cassandra),
processes stored results from Cassandra every half hour (Event Detector), combines news
with the geolocation of the events (Lookup Service) and combines named entities which are
extracted from events with a Flickr image, building a semantic web (Entity Extractor).
Semantic layer is responsible for the connection between change detection layer and event
detection layer. It uses multiple technologies: GeoTriples to convert geospatial data to RDF,
Strabon to store them, SemaGrow for the SPARQL queries processing and Sextant as a web
interface for handling (exploring, interacting, visualising) linked geospatial data.

GeoTriples[24] is a tool for transforming geospatial data from various formats into RDF. It
comprises of three components: mapping generator, mapping processor and
stSPARQL/GeoSPARQL evaluator. The mapping generator gets as input a file (ESRI Shapefiles,
XML, GML, KML, JSON, GeoJSON and CSV documents or spatially-enabled relational
databases (e.g., PostGIS and MonetDB)) and creates a mapping using RML and R2RML (rules)
which is based on the GeoSPARQL vocabulary. As an optional step, the user has the
opportunity to change this mapping according to his requirements. The mapping processor is
the component which is responsible for the RDF graph generation by using the result of the
mapping generator. The output can be expressed in a variety of RDF syntaxes such as Turtle,

D5.1 – V1.0

Page 25

RDF/XML, Notation3 or N-Triples. The stSPARQL/GeoSPARQL evaluator is a component for
querying in a relational database using a R2RML mapping.

Figure 5 Geotriples tool architecture

Strabon4[25] is an RDF triplestore for storing geospatial data that change over time. It
supports two extensions of SPARQL: stSPARQL, which accesses data in stRDF form and
GeoSPARQL, which queries geospatial data. It is mainly used to represent temporal
dimensions among the data by using events or facts that change over time as it also offers
some temporal functions. It extends Sesame RDF triplestore by supporting and handling
thematic, spatial and temporal data. Strabon 3.0 version uses Sesame 2.6.3 version and has
three modules: storage manager, query engine and POSTGIS. Storage manager creates two
B+ tree two-column indices by receiving a predicate table. Query processing consists of four
elements: a parser, an optimiser, an evaluator and a transaction manager. The parser
generates an abstract syntax tree, which is mapped later and creates a query tree. Query
tree is optimised according to Strabon optimisation techniques (stSPARQL extension
functions and DBMS informing about spatial joins in stSPARQL queries) and sent to the
evaluator to create the SQL query for evaluating PostgreSQL. The evaluator receives the
results and carries out any needed operation. Results are formatted according to the
selected data format.

Sparqlify[24] is a tool for converting SPARQL to SQL. It gives users the opportunity to search
a relational database by querying data in SPARQL by using a mapping language which is
similar to R2RML but has a different syntax. This opportunity removes the need of

4 http://www.strabon.di.uoa.gr/

http://www.strabon.di.uoa.gr/

D5.1 – V1.0

Page 26

maintaining two datastores for both SPARQL and SQL queries execution, which is the main
advantage of this method, but on the other hand it limits query flexibility in many cases. This
drawback comes from the translation between SPARQL and SQL as limited SPARQL queries
can be supported in SQL. Apart from SPARQL main features Sparqlify supports some
geospatial features like st_intersects, which checks if two geometries have mutual points.
Currently, Sparqlify supports access to the OpenStreetMap database as a linked data
interface for the project LinkedGeoData.

Geometry2RDF[28] was a tool for transforming geospatial data into RDF. The tool took as
input data stored in relational databases and produced as an output the RDF graph. The user
could configure the properties that concerned him. Geometry2RDF tool was based in Jena
and GeoTools libraries. Though the tool is no longer maintained by its developers, it was the
first tool that was dealing with this issue and has been used as a basis to develop the first
version of TripleGeo tool. Nowadays, Geometry2RDF5 is offered as a library for generating
RDF files. It is based in Jena and connects to Oracle geospatial databases.

TripleGeo[36] is a tool which can convert data from many type formats into RDF graph. Input
data can be in relational database format (PostgreSQL/PostGIS, Oracle Spatial and Graph,
MySQL and MS SQL Server) or raw files (ESRI shapefiles, GeoJSON, GML, KML, GPX and CSV).
It contains three modes: graph, stream and RML mode. Graph mode is responsible for the
transformation of the input data into RDF. Stream mode is handling each entry of the input
data in a different way. RML mode exploits the RML mappings in order to convert the data.
The disadvantage of this tool is that stream and graph modes contain only four attributes
(ID, name, geometry and category) for each tuple. This fact results in losing an amount of
information which is available in the dataset.

Ontop4theWeb[4] is a tool that supports querying data which are available on the Web in
table or REST API format. The tool handles data as relational as it converts the web data to
virtual table operators using SQL. It allows SQL querying by creating R2RML mapping rules to
convert data in RDF format. When a SPARQL query is created, the query is transformed to
SQL and results are returned in RDF format. A time window is available, where a user can
retrieve data. If time passes, data need to be re-imported. Ontop4theWeb is based in Ontop
which is the reason why it handles OBDA and R2RML. In the back-end component a madIS
system is developed for extending a SQLite database.

5.3 Annotation models

Annotating, the act of creating associations between distinct pieces of information, is a
pervasive activity online in many guises. Annotations are typically used to convey
information about a resource or associations between resources. Simple examples include a
comment or tag on a single web page or image, or a blog post about a news article. In this
section, we present the Web Annotation Data Model, which has inspired the EOPEN
annotation model described in Section 6.

5 http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/

http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/

D5.1 – V1.0

Page 27

5.3.1 Web Annotation Data Model

The Web Annotation Data Model6 specification describes a structured model and format to
enable annotations to be shared and reused across different hardware and software
platforms. This interoperability may be either for sharing with others, or the migration of
private annotations between devices or platforms. The shared annotations must be able to
be integrated into existing collections and reused without loss of significant information.
Common use cases can be modelled in a manner that is simple and convenient, while at the
same time enabling more complex requirements, including linking arbitrary content to a
particular data point or to segments of timed multimedia resources.

The specification provides a specific JSON format for ease of creation and consumption of
annotations based on the conceptual model that accommodates these use cases, and the
vocabulary of terms that represents it. The Web Annotation Vocabulary7 specifies the set of
RDF classes, predicates and named entities that are used by the Web Annotation Data
Model. It also lists recommended terms from other ontologies that are used in the model,
and provides the JSON-LD Context and profile definitions needed to use the Web Annotation
JSON serialisation in a Linked Data context.

An annotation is considered to be a set of connected resources, typically including a body
and target, and conveys that the body is related to the target. The exact nature of this
relationship changes according to the intention of the annotation, but the body is most
frequently somehow "about" the target. This perspective results in a basic model with three
parts, depicted in Figure 6. The full model supports additional functionality, enabling content
to be embedded within the annotation, selecting arbitrary segments of resources, choosing
the appropriate representation of a resource and providing styling hints to help clients
render the annotation appropriately. Annotations created by or intended for machines are
also possible, ensuring that the Data Web is not ignored in favour of only considering the
human-oriented Document Web.

The Web Annotation Data Model does not prescribe a transport protocol for creating,
managing and retrieving annotations. Instead it describes a resource oriented structure and
serialisation of that structure that could be carried over many different protocols.

6 https://www.w3.org/TR/annotation-model/

7 https://www.w3.org/TR/annotation-vocab/

Figure 6 Core Web Annotation Data Model pattern

D5.1 – V1.0

Page 28

5.4 Localisation

The localisation task in EOPEN is handled by a named entity recognition system, which is
responsible for detecting location entities found in tweets and subsequently pinpointing the
exact tweet locations on a territory map.

During the past twenty years, since the 6th MUC conference (1995)[14], there has been
enormous interest and research done in NER approaches and systems development. The
main task of NER involves the detection and classification of certain types of words found in
a text, such as persons, locations, organisations, temporal and numerical expressions, into
respective predefined categories. Several entity type hierarchies have been introduced since
then and span from simple 4-category (person, location, organisation, misc) [48] to 200-
category8 [49] propositions [45], [43].

While most first generation NER systems followed similar methodologies based on hand-
crafted features, it was soon proven that the task could profit enormously by the “modus
operandi” of machine learning. As such, statistical methods have been in the limelight of
second generation NER approaches ever since with supervised algorithms/models like Naive
Bayes, Support-Vector Machine (SVM) and especially Hidden Markov Models (HMM) and
Conditional Random Fields (CRF) [26]. These systems also relied on certain hand-crafted
features and were domain-dependent, requiring specific resources to be available, thus
making it very difficult to adapt to a different domain. Moreover, the advent of deep
learning (notably recurrent neural networks (RNN)) and a recent breakthrough in natural
language understanding, word representations9, such as word2vec [29], GloVE [37] and
fastText [5], caused renewed interest in NER and led to the development of state-the-art
systems, as found in [27] and [41]. A significant advantage of these latest systems is that
neither feature engineering nor specialised resources are needed, other than a small amount
of supervised training data, making their usage very versatile and “domain-agnostic”. The
latest advancements in the field take the form of models based on an encoder named
Transformer [7] and deep contextualised word representations. In the latter, the trained
vectors take under consideration the input sentence in its entirety and across all layers,
instead of just the nearest word context of the top layer found in previous approaches. This
improved results even further and newer systems are currently able to present f1-scores of
around 92-93 in the Conll2003 dataset, as can be seen in ELMO [40] (92.2 F1), BERT [7] (92.8
F1), FLAIR [1] (93.09 F1) systems and in [3] (93.5 F1).

8 https://nlp.cs.nyu.edu/ene/

9 The idea is to represent words by vectors that contain hidden information about the treated
language.

D5.1 – V1.0

Page 29

6 EOPEN ONTOLOGY AND ANNOTATION MODEL

6.1 EOPEN Annotation Model

In line with the preceding requirement analysis of EOPEN application contexts, a number of
ontological constructs have been defined in order to support data modelling, integration and
reasoning over the distilled information. These include:

• Constructs for capturing metadata of twitter.

• A structured model and format to enable annotations and assertions to be defined,
shared and reused across both inside the EOPEN application context but also in
different hardware and software platforms.

A key design choice underpinning the engineering of the EOPEN models has been the
adherence to a pattern-based approach, so as to capitalise on a modular, extensible and
interoperable framework for expressing annotations and achieve a better degree of
knowledge sharing, reuse and interoperability. In particular, the EOPEN annotation pattern
reuses the Web Annotation Data Model whose a brief summary is presented in Section 5.3.1
. It also reuses a number of existing schemata, such as DCMI and schema.org to inherit
general purpose hierarchies and descriptive attributes.

It must be noted that as the modelling and reasoning requirements evolve, while also user
requirements and component output become richer, iterative cycles of assessment and
respective revisions will take place. These will mainly affect the domain models that we use
to capture the various information types generated within EOPEN. The pattern-based
approach ensures that the conceptual model for associating resources with annotations will
not be affected by the updated domain models. This is especially important since it allows
incremental and targeted updates to be performed on the underlying vocabularies
(according to the updated requirements), minimising the risk for compatibility errors and the
impact that these changes may have on the platform.

In this section, we present the way the Web Annotation Data Model is used to address the
EOPEN modelling requirements, associating the tweet label information that is generated by
the EOPEN modules with metadata, we call collections (Figure 7). It should be mentioned
that the annotation model and underlying ontologies are checked against the requirements
in order to ensure that they adequately cover the knowledge that they are expected to
capture. As a consequence, formalisation and revision activities have been carried on
iteratively, and will continue for the
remaining duration of the project, as
the use cases and requirements
evolve. As already mentioned, the
separation of the domain ontologies
from the pattern used for attaching
metadata to various resources in the
form of views fosters reusability,
extensibility and interoperability,
minimising the effort to incorporate
updates needed because of updated

Figure 7 Core annotation model in EOPEN

oa:Annotation

ta:ClusterBody ta:Collection

oa:hasBody oa:hasTarget

D5.1 – V1.0

Page 30

user and technical requirements.

In this first version of the modelling framework (towards 1st prototype), the focus of the
semantic analysis framework has been mainly given on capturing non-EO information and
particularly tweet-related information and the labels that are extracted by the social media
analysis modules, in line with the overall focus of the EOPEN platform. Consequently, the
emphasis has been mainly placed on PUC 2. However, as described above, the standard-
based annotation model we have defined can be easily extended and adapted in order to
support the annotation of additional resources, without the need to change the core
conceptual framework. Finally, as described in Section 6.3, the stRDF/stSPARQL and the
GeoSPARQL standards have been used for EO data, which ensures the seamless support of
additional EO types in subsequent versions of the framework (2nd prototype and final
system).

6.1.1 EOPEN Annotation Classes

EOPEN uses the oa:Annotation class as a basic class in the ontology. The class is used in
both oa:Annotation and ta:Cluster_Annotation instances as a root. The initiation of an
annotation relevant to cluster annotation is performed by defining instances of the
oa:Annotation class.

Figure 8 The base of EOPEN ontology

D5.1 – V1.0

Page 31

As depicted in Figure 8, this class restricts the oa:hasBody property to take as values only
instances of the ta:ClusterBody class. In addition, the oa:hasBody property is restricted to
take as values only instances of the ta:Label type, since annotations are derived only from
labels. Each ta:Label instance has as property the name of the labels that are found in the
tweet text and the accuracy of each label. The ta:ClusterBody is an as:Object type (Figure
9).

The oa:Annotation class restricts the oa:hasTarget property to take as values only
instances of the ta:Collection class (Figure 8). In addition, the oa:hasTarget property is
restricted to take as values only instances of the ta:Annotation type. The annotations are
restricted with the oa:hasBody property which take only instances of the rdfs:Resource
class and with the oa:hasTarget property which take only instances of the ta:Tweet class.
More specifically, each annotation instance is linked with a ta:Resource instance which
contains a ta:topRanked property to describe if the specific tweet is characterised as top
ranked. Annotation instances are also linked with a ta:Tweet instance which is a subclass of
as:Note class (Figure 10).

Figure 10 Class that is subclass of as:Note

6.2 Representing Location

The ta:ClusterBody instance is responsible for representing the geospatial information and
information associated with the labels. For the representation of the geospatial information
we have used the World Geodetic System (WGS) standard. The WGS vocabulary provides
basic RDF properties for mapping geospatial data10 like latitude and longitude. The latest
version of this standard is WGS 84 (also known as WGS 1984, EPSG:4326), which was
established in 1984. An example is shown below.

10 https://www.w3.org/2003/01/geo/

as:Note

ta:Tweet

rdfs:subClass
Of

as:Object

ta:ClusterBody ta:Label

rdfs:subClassOf

Figure 9 Classes that are subclasses of as:Object

https://www.w3.org/2003/01/geo/

D5.1 – V1.0

Page 32

Table 5 Example of World Geodetic System mapping.

In our case, the ta:ClusterBody class is associated with the WGS properties and the
ta:Label class. Each ClusterBody refers to a coordinate system and includes a set of labels.
The information that refers to the geolocation are the latitude (wgs84_pos:lat) and the
longitude (wgs84_pos:long). Each label has an as:name property, which refers to the text of
the label, and an as:accuracy property, which is the accuracy for the specific label. The
ta:ClusterBody instance is associated with the following properties (Figure 11).

6.3 Linking open EO and non-EO data

Earth Observation data in the form of satellite imagery have by their nature a spatial and a
temporal dimension. Each EO product (scene) comes with an exhaustive set of structured
metadata which provide the full context in which the scene has been generated. This
includes information about the mission (e.g. Sentinel-1), the platform (Sentinel-1A or 1B),
the sensor and the operating mode, the sensing start and end time, the orbit number, the
position of the sun, etc. The information model is layered from the most generic to the most
specific information. Specific information is provided for example for radar products (e.g.
polarisation channels), while other information is provided for optical imagery (e.g. cloud
coverage).

Similarly to tweets and events data, EO products metadata may thus be encoded as linked
data and use the geo-temporal extensions of stRDF/stSPARQL or the GeoSPARQL to encode
the space and time values.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">

 <geo:Point>

 <geo:lat>55.701</geo:lat>

 <geo:long>12.552</geo:long>

 </geo:Point>

</rdf:RDF>

ta:ClusterBody

ta:labels wgs84_pos:lat wgs84_pos:long

as:accuracy as:name

Figure 11 Properties that are associated with ta:ClusterBody.

D5.1 – V1.0

Page 33

An OGC Discussion Paper OGC 16-074 EO Metadata Discovery using Linked Data, published
in March 201611, proposes interfaces to discover Earth Observation dataset series (families
of products) and dataset (product) metadata using the Linked Data paradigm. It also
describes the recommended encoding in RDF of Earth Observation resources.

Figure 12, below, extracted from the Discussion Paper, shows the main metadata attributes
linked to an EO product, that is: its footprint (oml:featureOfInterest), and the sensing start
and end time (ical:dtstart / ical:dtend). The document covers the full set of available
metadata and provides example encodings, mainly in JSON-LD, but also RDF/XML and Turtle.

Figure 12 Earth Observation Model

The Discussion Paper leaves room for alternatives. For example, the EO product footprint
could be encoded using the class oml:featureOfInterest or dct:spatial, but also sf:Polygon
and the geo:asWKT relationship as specified in GeoSPARQL.

Encoding the EO products metadata using the same specifications as the tweets and the
events makes it possible to store, manage and retrieve linked entities in a seamless manner,
using either stSPARQL or GeoSPARQL. For example, it becomes possible to search in a single
query for all the messages tweeted and all the satellite imagery acquired in the area of a
given event and in the same time frame.

It also becomes possible to use an RDF browser to navigate in the tweets, events,
EO products, and any other concepts that are encoded using the same classes.

11 http://wiki.services.eoportal.org/tiki-download_wiki_attachment.php?attId=4201.

dataset1

« 2012-04-07T18:20:55»

oml:

Observationrdf:type

« 2012-04-07T18:20:38»

ical:dtend

ical:dtstart

« POLYGON ((-120.99 49.13, -121.98 49.24, 122.27 48.10, -121.31 47.99, ...))»

oml:featureOfInterest
« 2012-04-08T19:00:35»

oml:resultTime

time1 oml:

TemporalObjectrdf:type

oml:phenomenonTime

oml:procedure
result1 rdf:

Classrdf:type

oml:result

process1 oml:

Processrdf:type

D5.1 – V1.0

Page 34

Because of the big and constantly increasing amount of available EO products, it may be
difficult to systematically convert all product metadata into Linked Data and ingest the result
in a graph database. Instead, a strategy may be put in place to selectively process the
products, for example based on an area of interest, a time of interest, or both.

D5.1 – V1.0

Page 35

7 SEMANTIC REASONING FRAMEWORK

7.1 Localisation

In this section we present a machine learning methodology for identifying location- and
organisation-type named entities in short text (tweets) written in different languages
(supported languages are English, Italian and Finnish). The adopted approach for the EOPEN
NER framework revolves around deep neural networks in the form of Long Short-Term
Memory (LSTM)-based models and is evaluated separately with respective datasets for each
treated language.

7.1.1 Methodology

In this section we present the neural network’s architecture and elaborate on its most
important features. Since the main issues that we need to address revolve around the
candidate word’s form and placement in a given sentence, we employ combined character-
level and word-level representation techniques to handle them with efficacy.

As already stated, the adopted approach is based on a LSTM-based model, namely a
bidirectional LSTM with a CRF layer on top. LSTMs are ideal when dealing with sequences of
data (like text) because of the way the network channels information via its nodes,
leveraging its ability to keep information in memory based on history. Any sequential
information is being kept in the LSTM’s internal state (AKA hidden layer) and is being
updated with each new data via input/output and forget gates. This way the network is
capable of predicting the output based on long distance dependencies. The bidirectional
nature of the LSTM network manifests with two processes, applicable to each lexical unit of
a given sentence that each computes a representation of the lexical unit’s left and right
context.

Handling word structure is not a trivial task, more so when dealing with orthographically and
morphologically rich languages. To counter issues deriving from the abovementioned
complexity and employ a method that takes into account the spelling of words, character-
level embeddings are used. The technique involves breaking up each lexical unit in its
respective characters and then feeding the resulting sequence to a bidirectional LSTM which
turns it into a spelling-respecting vector.

In order to also respect the syntactic structure of a document and convey each lexical unit’s
contextual characteristics word-level representations are indispensable. Again, a
bidirectional LSTM is used to capture each lexical unit’s contextual information (both left and
right context). Thus, the final word representations of the model combine both of the above
embeddings.

Furthermore, to fulfil the task of NER, assigning a NER label to each word in a sentence, the
output needs to be annotated accordingly. It has been shown that CRFs [26] can produce
high tagging accuracy, thereby we employ a CRF layer to attribute labels for the whole
sentence by leveraging sentence level tag information. The tagging format used follows the
BIO scheme (B-TAG for Beginning of entity, I-TAG for Inside of entity, O-TAG for Outside of
entity) where each word in a sentence is assigned a label reflecting its role. A named entity
frequently spans not just one, but many lexical units and using this format is possible to
annotate them efficiently irrespective of their length. As such, in the sentence: Professor

D5.1 – V1.0

Page 36

Smith tweeted that the area around London School of Economics is flooded today # London
the respective annotation reads O B-PER O O O O O B-ORG I-ORG I-ORG I-ORG O O O O B-
LOC. This tagging scheme has already yielded promising results, but in consequent testing,
the format will be updated to either the BILOU or BIOES variants; they are comparable and
usually improve scores even further since they predict dedicated tags for unique (U-TAG in
BILOU / S-TAG in BIOES) or end entities (L-TAG in BILOU / E-TAG in BIOES). Figure 13
highlights the bi-LSTM network’s structure, which is comprised of an input layer (word
embeddings), a hidden layer (Bi-LSTM encoder) and an output layer (CRF layer).

Figure 13 Bidirectional LSTM-CRF model for Named Entity Recognition

In the specific implementation data that needs to be processed (input) is comprised of two
text files; the first one contains all the tweets that become available from the IR service,
while the second contains the BIO annotation of the aforementioned tweets, one tweet per
line for both. The results are then outputted in a single file, in a “one sentence token-per-
line” format. In the same line, apart from the sentence token the assigned label is also
displayed in a tab delimited format.

The NER process using our model is followed by the concatenation of the sequential entities
recognised as location or organisation, unless there is a comma or a full stop. Eventually, two
lists are produced that contain all the locations and the organisations recognised within the
sentence, respectively (Figure 14).

In the case where location entities are recognised, the bounding box12 of each location is
retrieved via the OpenStreetMap API. It should be noted that usually OpenStreetMap
returns multiple responses for an entity and lists them based on their popularity. We
consider as correct the most popular one and retrieve the coordinates of its bounding box
and the coordinates of a specific point. In case no location entities are recognised, the
organisation entities are considered. Otherwise, the output of the tweet localisation module
is Null.

Finally, an analysis of the bounding boxes returned follows. Specifically, in case of one entity,
a single bounding box is returned. However, in case of multiple entities, the bounding boxes

12 https://wiki.openstreetmap.org/wiki/API_v0.6

D5.1 – V1.0

Page 37

are compared with each other in order to exclude bigger areas when a smaller - more
precise one is also available and all the remaining are returned as output.

Figure 14 Localisation steps after NER has been performed on available tweets

7.1.2 Datasets

A make or break feature concerning machine learning approaches is the availability of
appropriate datasets that will be used to train the relevant computational models. Such
datasets are easily attainable when over-represented languages like English are involved.
However, the same does not apply to less represented languages like Italian or Finnish; the
resources are scarce and finding a publicly available dataset can pose an insurmountable
problem. Moreover, even when a suitable dataset is encountered, it is often in
unconventional format or/and optimised for traditional classifier methods and as such, not
adequate for training neural network-based models, which currently hold the state-of-the-
art crown. There are also cases where training data do exist but are limited in size. Thus, a
lot of effort must be put into converting them to secure compatibility with contemporary
models or into fusing them with other also limited datasets. To address the specific issue,
many researchers are forced to create datasets from scratch, a process which is both
expensive and time-consuming. In the context of EOPEN both publicly available dataset and
custom annotated corpora are exploited to manage multilingual location and organisation
extraction entities.

In the context of the English localisation task, the model has been trained and evaluated on
the CoNNL2003 dataset [48] which includes annotation of 4 categories of named entities: i)
Person (PER), ii) Location (LOC), iii) Organisation (ORG), and iv) Miscellaneous (MISC). Out of
these annotations, we have direct interest only for the “Location” one, but also opted for the
“Organisation” entities in an attempt to infer possible locations out of organisations’ locales.

D5.1 – V1.0

Page 38

The task will be handled by a separate procedure that will consider an organisation’s name
being present in a tweet along with respective context analysis which will include heuristics
concerning phrases like “adjacent/next to”, “2 kms”, “50 metres”, etc.

The dataset is balanced in the three important categories (PER, ORG, LOC) and contains
similar number of named entity occurrences, as is evident from Table 6.

Table 6 Number of named entities and sentences in each of the CoNLL2003 data files

CoNLL2003 (EN) PER LOC ORG MISC Sentences

Training set 6600 7140 6321 3438 14987

Development set 1842 1837 1341 922 3466

Test set 1617 1668 1661 702 3684

Concerning the Italian task, the dataset originates from the NER task at EVALITA 2009 [51].
The tagging method that was followed is based on the IOB2 format while the entity types
differ in respect to the CoNLL2003 dataset in that the MISC category is replaced by the GPE
(Geo-Political Entity) one.

Table 7 Number of named entities and sentences in each of the EVALITA2009 data files.

EVALITA2009 (IT) PER LOC ORG GPE Sentences

Training set 4577 362 3658 2813 11227

Test set 2378 156 1289 1143 4136

When dealing with NER in Finnish, the issue of limited language resources quickly becomes
apparent. To the best of our knowledge there is only one freely available dataset13 which
was extracted from the archives of Digitoday, a Finnish online technology news source. It
consists of 953 articles in BIO format, annotated with six named entity classes (organisation,
location, person, product (PRO), event (EVENT), and date (DATE)). Since the dataset in its
current state is too small to be used with a DNN, no remarkable results are expected until
the issue of data size is addressed. On that account, we are working towards enhancing it, by
adding more sentences of our own manual annotation efforts.

Table 8 Number of named entities and sentences in each of the DIGITODAY data files

DIGITODAY (FI) PER LOC ORG PRO EVENT DATE Sentences

Training set 84 58 519 135 1 78 591

Test set 185 268 544 173 2 51 986

7.1.3 Network parameters and training

The parameters that were used during training of the Bi-LSTM-CRF models are displayed on
Table 9. The word representations used as input in the current model are the publicly
available, pre-trained 300-dimensional GloVE embeddings [37] trained on the common crawl

13 https://github.com/mpsilfve/finer-data

D5.1 – V1.0

Page 39

corpus for the English language, while for Italian and Finnish, the respective pre-trained 300-
dimensional fastText [13] embeddings were used. At the time of writing, the same settings
were applied to all three languages. However, in the coming months they will be fine-tuned
to perform optimally, taking advantage of all differentiating features of the specific
resources.

Table 9 Bi-LSTM-CRF settings used for the task’s languages

Training parameters Value

Optimiser Adam

Character embeddings dimensions 100

Word embeddings dimensions 300

Dropout rate 0.5

Epochs 25

Batch size 20

LSTM size 100

7.1.4 Results

For the evaluation of the performance of all configurations the values for the precision,
recall and F1-score measures were computed (Table 10). It should be noted at this point that
all reported results concern the entirety of named entities found in the respective datasets,
while our actual area of interest is limited only to the location entities found in tweets.
Dedicated location scores, comparison with other systems where available, and appropriate
fine-tuning information will be reported on D5.2.

Table 10 Performance evaluation of the proposed system (EN) vs. the baseline system and a
state-of-the-art approach

System (CoNLL2003) Precision Recall F1-score

Our system 90.95 90.94 90.97

Best-scoring shared task
system: Florian et al., 2003

88.99 88.54 88.76

Baevski, A. et al. 2019 (not reported) (not reported) 93.5

At this point the results concerning the English language are very similar to the state-of-the-
art, yielding an F1-score of ~91. To further improve on this score, on future iterations we
plan to update the model with newer embeddings (e.g. ELMO) and annotation (to the
BILOU/BIOES format). Next, we introduce ten example tweets extracted directly from the
EOPEN platform after they have been processed by the localisation tool. The sentences are
presented with integrated location annotation to better convey the application process. In
orange the entities that were extracted correctly, while in red the entities that were not
extracted at all or were extracted with the wrong annotation (e.g. PER instead of LOC) and

D5.1 – V1.0

Page 40

thus, discarded. All coloured entities in each sentence should be extracted and annotated
correctly in order to reach 100% results.

Relevant passage (EN):

1. Matteotti square is flooded. #underwater #flooding
2. The sewers are flooded. #Vicenza #flooding
3. #Bacchiglione #flooding #Vicenza The river has overflowed.
4. The levees are cracked at Angeli bridge.
5. Houston fears climate change will cause catastrophic flooding
6. Could see heavy rain and local flooding from storms on Monday in New Jersey …
7. How quick-thinking mother saved family from Grenfell fire by flooding her flat
8. Flying in over the snow covered fields of Finland was quite magical!
9. current weather in Tampere: light shower snow, -4°C, 92% humidity, wind 3kmh
10. Not only one, many snowploughs coming to the rescue. #oslo

The same evaluation metrics apply to the Italian use case and are presented in Table 11.

Table 11 Performance evaluation of the proposed system (IT) vs. the baseline system and a
state-of-the-art approach

System (EVALITA2009) Precision Recall F1-score

Our system 75.49 75.60 75.37

Best-scoring shared task

system: FBK_ZanoliPianta

84.07 80.02 82.00

Nguyen and Moschitti, 2012 85.99 82.73 84.33

Currently the Italian model is fully operational and the first results are indicative of its
ongoing development status. The dataset needs to be updated in terms of annotation (to
the BILOU/BIOES format) and the training parameters and embeddings need to be fine-
tuned in order to take advantage of the neural model’s potential. The best result to date is
reported by such a system, as can be seen in [33]. Again, as was the case with the English
language, ten example tweets are presented to demonstrate the tool’s progress towards
efficient location recognition in Italian.

Relevant passage (IT):

1. Ventennale dell’#alluvione di #Sarno, cosa è cambiato?
2. Dicono che Genova è solo rossoblù e fanno il tifo per l’alluvione
3. esiste tifoseria più ritardata del Napoli?
4. Presentazione il sistema di #allertameteo della #ProtezioneCivile della città di

#Gorizia
5. Situazione di forte #allertameteo ieri in #Spagna per la #grandine.
6. #Siracusa, allagamento nel seminterrato dell'ospedale "Rizza"
7. Siamo al 21° anniversario dell'alluvione a Stazzema: una targa in ricordo
8. #documentario sull'alluvione #Firenze al @AquaFilmFestiva 2017
9. Maltempo, disastro in Veneto: dopo il super caldo, ecco l’alluvione.

D5.1 – V1.0

Page 41

10. Ponte Milvio fa acqua: ancora un allagamento in via Prati della Farnesina... #news
#Roma

7.2 Semantic search enrichment

In this section we present a methodology that we developed to extract the first hypernyms
in three levels from WordNet. The methodology establishes a connection between BabelNet,
Babelfy and WordNet. More specifically the methodology gets as input a JSON file which
contains mostly text metadata about a topic which is found in tweets like labels, location
and ids Table 12. In the JSONArray each JSONElement characterises a different topic. More
details about the JSON input file can be found in section 8.

We take into account each label’s text from the input (Value selection) and we extract
Babelfy information for each text using the Babelfy Java API (Information extraction). Some
words may appear multiple times in the response, so we apply a data cleaning technique to

[
 {
 "id":"1",
 "labels":[
 {
 "text":"lash",
 "score":0.0339359955414791
 },
 {
 "text":"breaking",
 "score":0.0257992605776155
 },
 {
 "text":"area",
 "score":1.1073852024257E-7
 }
],
 "location":{
 "latitude":45.5455,
 "longitude":11.5354
 },
 "tweets":[
 "1001376987271778310",
 "1001379246076379136",
 "1001379428713119745",
 "1001379709177942016",
 "1001412744237629446",
 "1001411514874585088"
],
 "top_ranked_tweets":[
 "1001376987271778310",
 "1001379246076379136",
 "1001379428713119745",
 "1001379709177942016"
]
 }
]

Table 12 Input example

D5.1 – V1.0

Page 42

keep the words with the highest global score which is included in the Babelfy information
that are extracted (Results cleaning). Another field that is included is the BabelNet URL,
which we used to connect to the BabelNet Linked data interface14 (WordNet id extraction).
The interface contains a plethora of additional information for each word. We used the
lemon-WordNet31 value to execute SPARQL queries and extract the first hypernym for each
word for a three-level tree of hypernyms (Table 13). A graph view of the methodology that
we followed is shown in Figure 15.

Figure 15 The methodology that we followed

The results are saved in a new JSON file which contains the plain text and the tags from the
original JSON file, the file id and a JSON array with the WordNet information: the term that
has been analysed and the hypernym identifier for each one of the three hypernym levels
Table 13. Some results were not found in BabelNet and they are not included in the result,
while others may not have hypernyms so they have “null” value in the hypernym level that
was not found. The identifier of each level can be used in WordNet to extract more
information about the each hypernym like the description, the synonyms, the part of speech
type, the hypernyms, the hyponyms and the holonyms.

14 http://babelnet.org/rdf/page/

PREFIX pwnid: <http://wordnet-rdf.princeton.edu/id/>

PREFIX wn: <http://wordnet-rdf.princeton.edu/ontology#>

PREFIX ontolex: <http://www.w3.org/ns/lemon/ontolex#>

select distinct ?x where {

pwnid:05135784-n wn:hypernym ?x.

}

Table 13 Example of querying in WordNet for hypernyms extraction

http://babelnet.org/rdf/page/

D5.1 – V1.0

Page 43

7.3 Rules

The semantic framework implements a reasoning and validation framework to further
aggregate and link the metadata collected from processing components, as well as to ensure
the semantic consistency of the generated RDF graphs.

Additional inferences are derived by combining native OWL 2 RL reasoning and custom rule
sets. The former is solely based on the OWL 2 RL profile semantics that are implemented in
the form of first-order axiomatisation (OWL 2 RL/RDF rules [30]). The knowledge base is
connected with state-of-the-art triple stores, such as GraphDB and AllegroGraph, for storing
and querying metadata that inherently implement the semantics of OWL 2 RL.

However, the semantics of the OWL 2 language is limited. For example, OWL 2 class
semantics can model only domains where instances are connected in a tree-like manner
[32]. Our framework allows us to define custom rules on top of the knowledge graphs to
express richer semantic relations. SPARQL-based rules are used to capture domain
relationships in the form of CONSTRUCT graph patterns that identify the valid inferences
that can be made on the annotation pattern. Figure 16 presents the abstract reasoning
architecture.

[
 {
 "Id":"1",
 "Wordnet":[
 {
 "Level 1":"01881348-v",
 "Level 3":"01835473-v",
 "Level 2":"01880523-v",
 "Term":"lash"
 },
 {
 "Level 1":"null",
 "Level 3":"null",
 "Level 2":"null",
 "Term":"breaking"
 },
 {
 "Level 1":"05130681-n",
 "Level 3":"04923519-n",
 "Level 2":"05097645-n",
 "Term":"area"
 }
]
 }
]

Table 14 Output example

D5.1 – V1.0

Page 44

Figure 16 Abstract reasoning architecture

7.3.1 Rules

We use SPIN rules, i.e. SPARQL construct graph patterns, to implement expressive reasoning
rules, enabling property value propagation and instance generation (when needed). The
core idea is to associate each reasoning task with one or more SPARQL rules that support
specific reasoning functionality, e.g. link of tweet clusters. In the following, we present
examples of such reasoning cases and rules. More elaborate rule-based reasoning cases will
be tackled in future versions of the prototype framework and reported in upcoming
deliverables.

Tweet cluster linking. In section 7.2 we described the way tweet clusters are enriched with
additional terms from lexical database and Linked Data resources. Based on the new context
added to the KB, we can define rules that materialise and further interlink the resources. For
example, tweet cluster whose extended list of topics contains many overlaps with another
tweet cluster, can be considered relevant. In this case, we enable the navigation among of
conceptually relevant tweet groups, detecting connections that have not been identified by
the topic detection module. The rule that implements this relations is given below:

PREFIX ta: <https://eopen-project.eu/ontologies/tweet-annotations#>
PREFIX oa: <http://www.w3.org/ns/oa#>
CONSTRUCT {
 ?a1 ta:relevant ?a2 .
}
WHERE {
 ?a1 a ta:ClusterAnnotation;
 oa:hasBody ?b1.
 ?b1 ta:labels ?l1.
 ?a2 a ta:ClusterAnnotation;
 oa:hasBody ?b2.
 ?b2 ta:labels ?l2.
 FILTER (?a1 != ?a2) .
 FILTER(:relevant (?l1, ?l2))
}

D5.1 – V1.0

Page 45

The rule matches a tweet annotation (a1) whose cluster contains at least one relevant topic
to some other cluster (a2). In this case, a new triple is generated that materialise the fact
that these two cluster are relevant (?a1 ta:relevant ?a2). In future version of the
framework, we will implement a more advanced method that will take into account the
number of the relevant terms in order to associate different weights.

7.3.2 Validation

The validation process aims to check the consistency, structural and syntactic quality of the
generated metadata descriptions before the annotations graphs are persisted in the
repository. The validity of the annotations is checked using both native ontology consistency
checking (e.g. OWL 2 DL reasoning) and custom SHACL [22] validation rules, following the
closed-world paradigm. The former handles validation taking into account the semantics at
the terminological level (TBox), e.g. checking class disjointness. The latter is necessary in
order to detect constraint violations in RDF data, e.g. missing values, cardinality violations,
etc. An example SHACL shape is given below that represents a constraint that all Cluster
Annotations should include at least one collection of tweets.

ta:ClusterAnnotation
 rdf:type sh:NodeShape ;
 sh:property [
 rdf:type sh:PropertyShape ;
 sh:path oa:hasTarget ;
 sh:class as:Collection ;
 sh:minCount 1 ;
 sh:nodeKind sh:IRI ;
] ;
.

D5.1 – V1.0

Page 46

8 ONTOLOGY VALIDATION

In this section we describe the EOPEN annotation model to map the results of Task 4.2 using
a simulation example. The technical partners provided feedback about the generated results
(both in terms of the format and content), helping us generate the respective annotation
vocabularies. The JSON below was given as input and the Turtle RDF file was produced as an
output.

The input describes the results of topic extraction. The results contain a top ranked tweet
which has one label. The tweet refers to a geolocation. The output contains properties
relevant with the resource and labels found in the tweet.

[
 {
 "id":"1",
 "labels":[
 {
 "text":"rain",
 "score":0.320496732575757
 }
],

"location":{
 "latitude":45.5455,
 "longitude":11.5354
 },
 "tweets":[
 "1001376594013765632"
],
 "top_ranked_tweets":[
 "1001376594013765632"
]
 }
]

Table 15 Example of input data in JSON

D5.1 – V1.0

Page 47

Figure 17 Example mapping of topic extraction results for the simulation example

The generated knowledge graphs contain all the necessary relations to adequately map the
output of topic extraction. Following the annotation model described in Section 6.1 , an
ta:ClusterAnnotation resource is generated that is linked with the target of the
annotation, i.e. the generated collection (Collection_1) and the cluster body
(ta:ClusterBody_1). The latter, defines property assertions relevant to the labels extracted
from the tweet, the geolocation and the resource of the tweet, while the first defines the
tweet general information like URL and topRanked property. The RDF graph in the Turtle
syntax15 is given below.

15 https://www.w3.org/TR/turtle/

https://www.w3.org/TR/turtle/

D5.1 – V1.0

Page 48

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix as: <http://www.w3.org/ns/activitystreams#> .
@prefix ta: <https://eopen-project.eu/ontologies/tweet-annotations#> .
@prefix wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

<https://eopen-project.eu/ontologies/tweet-annotations#>
 a owl:Ontology ;
 owl:imports <http://www.w3.org/ns/oa>, <https://www.w3.org/ns/activitystreams-
owl> ;
 owl:versionInfo "Created with TopBraid Composer" .

<https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody>
 a owl:Class ;
 rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Object> .

<https://eopen-project.eu/ontologies/tweet-annotations#Label>
 a owl:Class ;
 rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Object> .

<https://eopen-project.eu/ontologies/tweet-annotations#Tweet>
 a owl:Class ;
 rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Note> .

<https://eopen-project.eu/ontologies/tweet-annotations#labels>
 a owl:ObjectProperty ;
 rdfs:domain <https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody>
;
 rdfs:range <https://eopen-project.eu/ontologies/tweet-annotations#Label> ;
 rdfs:subPropertyOf <http://www.w3.org/ns/activitystreams#tags> .

<https://eopen-project.eu/ontologies/tweet-annotations#topRanked>
 a owl:DatatypeProperty ;
 rdfs:range xsd:boolean .

<https://eopen-project.eu/ontologies/tweet-annotations#Cluster_Annotation_1>
 a <http://www.w3.org/ns/oa#Annotation> ;
 oa:hasBody <https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody_1>
;
 oa:hasTarget <https://eopen-project.eu/ontologies/tweet-
annotations#Collection_1> .

<https://eopen-project.eu/ontologies/tweet-annotations#Label_1>
 a <https://eopen-project.eu/ontologies/tweet-annotations#Label> ;
 as:accuracy "0.32049674"^^xsd:float ;
 as:name "rain" .

<https://eopen-project.eu/ontologies/tweet-annotations#Annotation_1>
 a oa:Annotation ;
 oa:hasBody <https://eopen-project.eu/ontologies/tweet-annotations#Resource_1> ;
 oa:hasTarget <https://twitter.com/1001376594013765632> .

Table 16 Example of output data in RDF

D5.1 – V1.0

Page 49

<https://twitter.com/1001376594013765632> a <https://eopen-
project.eu/ontologies/tweet-annotations#Tweet> .
<https://eopen-project.eu/ontologies/tweet-annotations#Resource_1>
 a rdfs:Resource ;
 ta:topRanked true .

ta:Collection_1
 a as:Collection ;
 as:items ta:Annotation_1 .

ta:ClusterBody_1
 a ta:ClusterBody ;
 wgs84_pos:lat "45.5455"^^xsd:float ;
 wgs84_pos:long "11.5354"^^xsd:float ;
 ta:labels ta:Label_1 .

D5.1 – V1.0

Page 50

9 CONCLUSIONS

In this document we provided the requirement specifications and the state-of-the-art
analysis relevant to the building of the semantic knowledge structures addressed within T5.1
“The EOPEN ontology”. We also described the current status of the EOPEN ontologies
towards MS3 that encode in a structured way the vocabulary and the precise semantics of
information relevant to the EOPEN application context. We have also presented the
preliminary version of WP5’s reasoning framework towards MS3 (T5.2 “Reasoning for
decision support”) for combining, integrating and semantically interpreting and enriching the
knowledge captured in the KB. The current annotation model of EOPEN has been validated
through a simulation example organised within WP5 in order to elicit modelling
requirements and acquire a better understanding of the structure and content of the
outputs provided by each component of the EOPEN pipeline. Finally, as far as T5.2 is
concerned (“Linked open EO data”), we presented the roadmap towards interlinking EO and
non-EO data.

Next steps include further enrichments and enhancements of WP5 ontology-based
framework in three main directions. First, to refine the already developed annotation
models and to provide and validate additional ontology constructs for capturing richer
domain knowledge pertinent population of the KB with data, based on the richer output the
various modules will provide towards the first prototype (M18). This involves also the
development and integration of domain models pertinent to the use cases of the EOPEN
project. The annotation model will be also enriched with additional metadata properties,
when it is a clear view on the exact output of the analysis. Second, to enhance the reasoning
capabilities that will address more elaborate interpretation aspects by (i) enriching the
supported semantics both at the terminological level, by defining additional class and
property axioms, and at the assertional level by incorporating inference rules, (ii) handling
imperfect information (i.e. missing or uncertain inputs). Special emphasis will be also place
on aggregating the results of EO and non-EO data. Finally, in parallel with T5.2, searching
APIs will be implemented in order to provide an intelligent query interface for addressing
users’ searching requirements, e.g. searching tweets based on semantics.

D5.1 – V1.0

Page 51

REFERENCES

[1] Akbik, A. et al. 2018. Contextual string embeddings for sequence labeling. Proceedings
of the 27th International Conference on Computational Linguistics (2018), 1638–1649.

[2] Baader, F. et al. 2003. The description logic handbook: Theory, implementation and
applications. Cambridge university press.

[3] Baevski, A. et al. 2019. Cloze-driven Pretraining of Self-attention Networks. arXiv
preprint arXiv:1903.07785. (2019).

[4] Bereta, K. et al. 2018. Querying the web on-the-fly using ontologies and mappings.
CEUR Workshop Proceedings (2018).

[5] Bojanowski, P. et al. 2016. Enriching Word Vectors with Subword Information. arXiv
preprint arXiv:1607.04606. (2016).

[6] Deborah L. McGuinness, F. van H. 2004. Owl web ontology language overview. W3C
recommendation 10.2004-03. (2004). DOI:https://doi.org/10.1145/1295289.1295290.

[7] Devlin, J. et al. 2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805. (2018).

[8] Dimou, A. et al. 2015. Assessing and refining mappings to RDF to improve dataset
quality. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (2015).

[9] Dimou, A. et al. 2014. RML: A generic language for integrated RDF mappings of
heterogeneous data. CEUR Workshop Proceedings (2014).

[10] Fernández-López, M. et al. 1997. METHONTOLOGY: From Ontological Art Towards
Ontological Engineering. AAAI-97 Spring Symposium Series. (1997).
DOI:https://doi.org/10.1109/AXMEDIS.2007.19.

[11] Glimm, B. et al. 2014. HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning.
(2014). DOI:https://doi.org/10.1007/s10817-014-9305-1.

[12] Grau, B.C. et al. 2008. OWL 2: The next step for OWL. Web Semantics: Science,
Services and Agents on the World Wide Web. 6, 4 (2008), 309–322.

[13] Grave, E. et al. 2018. Learning Word Vectors for 157 Languages. Proceedings of the
International Conference on Language Resources and Evaluation (LREC 2018) (2018).

[14] Grishman, R. and Sundheim, B. 1996. Message understanding conference-6: A brief
history. COLING 1996 Volume 1: The 16th International Conference on Computational
Linguistics (1996).

[15] Grosof, B.N. et al. 2003. Description logic programs: Combining logic programs with
description logic. Proceedings of the 12th international conference on World Wide
Web. (2003). DOI:https://doi.org/10.2139/ssrn.460986.

[16] Gruber, T.R. 1993. A translation approach to portable ontology specifications.
Knowledge Acquisition. (1993). DOI:https://doi.org/10.1006/knac.1993.1008.

[17] Haarslev, V. and Möller, R. 2003. Racer: A Core Inference Engine for the Semantic
Web. Proceedings of the 2nd International Workshop on Evaluation of Ontologybased

D5.1 – V1.0

Page 52

Tools. (2003). DOI:https://doi.org/10.1.1.10.3822.

[18] Harris, S. and Seaborne, A. 2013. SPARQL 1.1 Query Language.

[19] He, S.Y. et al. 2004. Effects of pres0sure reduction rate on quality and ultrastructure of
iceberg lettuce after vacuum cooling and storage. Postharvest Biology and Technology
(2004), 263–273.

[20] Horrocks, I. et al. 2004. SWRL : A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member submission 21. (2004).

[21] ter Horst, H.J. 2004. Extending the RDFS Entailment Lemma. The Semantic Web –
ISWC 2004 (2004).

[22] Knublauch, H. and Ryman, A. 2015. Shapes Constraint Language (SHACL). W3C First
Public Working Draft, W3C.

[23] Koubarakis, M. and Kyzirakos, K. 2010. Modeling and querying metadata in the
semantic sensor web: The model stRDF and the query language stSPARQL. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (2010).

[24] Kyzirakos, K. et al. 2018. GeoTriples: Transforming geospatial data into RDF graphs
using R2RML and RML mappings. Journal of Web Semantics. (2018).
DOI:https://doi.org/10.1016/j.websem.2018.08.003.

[25] Kyzirakos, K. et al. 2012. Strabon: A semantic geospatial DBMS. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) (2012).

[26] Lafferty, J. et al. 2001. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. (2001).

[27] Lample, G. et al. 2016. Neural architectures for named entity recognition. arXiv
preprint arXiv:1603.01360. (2016).

[28] León, A. De et al. 2010. Geographical linked data: a Spanish use case. Proceedings of
the In I-SEMANTICS ’10 6th International Conference on Semantic Systems (2010).

[29] Mikolov, T. et al. 2013. Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781. (2013).

[30] Motik, B. et al. 2012. OWL 2 Web Ontology Language Profiles (Second Edition). W3C
Recommendation.

[31] Motik, B. et al. 2005. Query answering for OWL-DL with rules. Web Semantics. (2005).
DOI:https://doi.org/10.1016/j.websem.2005.05.001.

[32] Motik, B. et al. 2008. Structured objects in OWL: Representation and reasoning.
Proceedings of the 17th international conference on World Wide Web (2008), 555–
564.

[33] Nguyen, T.-V.T. and Moschitti, A. 2012. Structural reranking models for named entity
recognition. Intelligenza Artificiale. 6, 2 (2012), 177–190.

[34] De Nicola, A. et al. 2005. A Proposal for a Unified Process for Ontology Building:

D5.1 – V1.0

Page 53

UPON. Springer, Berlin, Heidelberg. 655–664.

[35] Noy, N.F. and McGuinness, D.L. 2001. Ontology Development 101: A Guide to Creating
Your First Ontology. Stanford Knowledge Systems Laboratory. (2001).
DOI:https://doi.org/10.1016/j.artmed.2004.01.014.

[36] Patroumpas, K. et al. 2014. TripleGeo: An ETL tool for transforming geospatial data
into RDF triples. CEUR Workshop Proceedings (2014).

[37] Pennington, J. et al. 2014. Glove: Global vectors for word representation. Proceedings
of the 2014 conference on empirical methods in natural language processing (EMNLP)
(2014), 1532–1543.

[38] Perez, J. et al. 2006. Semantics and Complexity of SPARQL. (2006), 30–43.
DOI:https://doi.org/10.1145/1567274.1567278.

[39] Perry, M. and Herring, J. 2012. OGC GeoSPARQL-A geographic query language for RDF
data. OGC Candidate Implementation Standard. (2012).

[40] Peters, M.E. et al. 2018. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365. (2018).

[41] Peters, M.E. et al. 2017. Semi-supervised sequence tagging with bidirectional
language models. arXiv preprint arXiv:1705.00108. (2017).

[42] Pittaras, N. et al. 2019. GeoSensor: semantifying change and event detection over big
data. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (2019),
2259–2266.

[43] Pradhan, S. et al. 2013. Towards robust linguistic analysis using OntoNotes.
Proceedings of the Seventeenth Conference on Computational Natural Language
Learning (2013), 143–152.

[44] R2RM: RDB to RDF Mapping Language: 2011. .

[45] Ritter, A. et al. 2011. Named entity recognition in tweets: an experimental study.
Proceedings of the conference on empirical methods in natural language processing
(2011), 1524–1534.

[46] Rosati, R. 2006. DL+log: Tight Integration of Description Logics and Disjunctive
Datalog. The Tenth International Conference on Principles of Knowledge
Representation and Reasoning KR2006 (2006).

[47] Sanderson, R. et al. 2016. Web Annotation Data Model.

[48] Sang, E.F. and De Meulder, F. 2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. arXiv preprint cs/0306050. (2003).

[49] Sekine, S. et al. 2002. Extended Named Entity Hierarchy. LREC (2002).

[50] Sirin, E. et al. 2007. Pellet: A practical OWL-DL reasoner. Web Semantics. (2007).
DOI:https://doi.org/10.1016/j.websem.2007.03.004.

[51] Speranza, M. 2009. The named entity recognition task at evalita 2009. Proceedings of
the Workshop Evalita (2009).

[52] SPIN - Overview and Motivation W3C: Member Submission 22 February 2011: 2011. .

D5.1 – V1.0

Page 54

[53] Staab, S. et al. 2001. Knowledge processes and ontologies. IEEE Intelligent Systems
and Their Applications. (2001). DOI:https://doi.org/10.1109/5254.912382.

[54] Studer, R. et al. 1998. Knowledge engineering: Principles and methods. Data &
Knowledge Engineering. 25, 1–2 (Mar. 1998), 161–197.
DOI:https://doi.org/10.1016/S0169-023X(97)00056-6.

[55] Suárez-Figueroa, M.C. et al. 2009. How to write and use the ontology requirements
specification document. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2009).

[56] Tsarkov, D. and Horrocks, I. 2006. FaCT++ Description Logic Reasoner: System
Description. Springer, Berlin, Heidelberg. 292–297.

[57] Vardi, M.Y. 1996. Why is modal logic so robustly decidable? Descriptive Complexity
and Finite Models: Proceedings of a DIMACS Workshop (1996).

D5.1 – V1.0

Page 55

A Appendix

A.1. Software and tools

The current version of the JSON to RDF converter is available in the repository
https://gitlab.com/rousi.maria1/eopen-jsontordfconverter. The converter gets as an input a
JSON file, converts it into RDF, saves the RDF format in the semantic database GraphDB and
returns as a result the RDF format of the input. The converter is a post web service, while a
dockerfile is available in order to be integrated with docker. Also, in the repository
https://gitlab.com/rousi.maria1/eopen-jsontordfclient a java client is available which sends a
JSON to the converter and gets as a result the RDF format of the input.

https://gitlab.com/rousi.maria1/eopen-jsontordfconverter
https://gitlab.com/rousi.maria1/eopen-jsontordfclient

