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Abstract 

This deliverable documents the semantic models for mapping the EOPEN-pertinent 
conceptualisations on ontology-related constructs. In addition, it describes the functionality 
of the first version of semantic integration and reasoning techniques. First, the purpose, 
scope, intended users and the requirements of the ontologies as identified at this phase of 
the project are described. Their specification has been driven by the WP2 initial user 
requirements identified for the individual scenarios, as well as by the dependencies incurring 
from the interaction with the WP3 and WP4 analysis components and the WP6 functionality 
aspects. Second, the literature is reviewed, covering state-of-the-art languages for formal 
knowledge representation, existing ontologies covering domains and requirements relevant 
to those of EOPEN, and methods pertinent to the extraction of location and organisation 
entities encountered in user tweets. Third, the current status of the EOPEN ontologies and 
tools is described, discussing the main entities they comprise. Fourth, the basic principles 
that underpin the first preliminary version of the WP5 reasoning framework towards 
reasoning and interpretation are described. The report also describes the progress on 
developing the Linked Data infrastructure to connect EO and non-EO data. Last, the report 
presents examples of the created annotation models. 
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Executive Summary 

The present deliverable reports on the work carried out within T5.1, T5.2 and T5.3, relevant 
to the development of the EOPEN ontologies and the representation and mapping of 
content on ontological entities (T5.1). In addition, it describes the first preliminary 
framework towards reasoning (T5.3) and elaborates on the roadmap for linking of open EO 
and non-EO data (T5.2). 

More specifically, the present deliverable presents the current content of the EOPEN 
ontologies and the methodology adopted to build them. Based on the requirements set 
forth by WP2 and the dependencies incurring from the interaction with the other WPs, the 
purpose, scope, intended users and uses, and the requirements of the EOPEN ontologies 
were identified. These specifications, along with the modelling insights from the relevant 
literature, served as guidelines for building the first version of the EOPEN ontologies that 
currently comprises modules for capturing the analysis results (metadata) of social media 
analysis (non-EO data), such as topics and localisation.  

In addition, we present a preliminary version of the reasoning layer whose purpose is to 
enrich the supported semantics and metadata both at the terminological level, by defining 
additional class and property axioms, and at the assertional level by incorporating inference 
rules. The additional inference capabilities will afford the contextual enrichment of the 
knowledge graphs that will be useful at query-time, i.e. for context-aware tweet retrieval. 
Finally, a roadmap is presented on how EO and non-EO will be interlinked in the knowledge 
base in order to facilitate advanced context awareness and support the modelling and 
reasoning requirements set in the project. 

The work presented within this document presents the preliminary version of the EOPEN 
ontologies, reasoning and interpretation framework. More elaborate ontology-based 
interpretation and reasoning tasks will be tackled in future versions of the framework and 
reported in upcoming deliverables. 
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1 INTRODUCTION  

One of the cardinal objectives of WP5 is to provide the framework for encoding, aggregating 
(T5.1), semantically interlinking (T5.2) and analysing information (T5.2) relevant to the 
EOPEN application domain. In particular, WP5 provides the knowledge structures and 
vocabularies (ontologies) for defining a flexible and modular ontology-based framework for 
representing (a) Earth Observation, (b) meteorological and climate information, (c) social 
media information, (d) domain-specific aspects (e.g. floods, food security). The ontological 
framework will consist of a network of interconnected ontologies, along with a set of 
appropriate tools for populating the ontologies. The models created will constitute the 
foundations for the reasoning mechanisms. The reasoning framework will take into account 
underlying context coming from other EOPEN modules as well as domain knowledge. 

The logical dependencies of WP5 with the other WPs of the EOPEN project are depicted in 
Figure 1. The figure also depicts the dependencies with WP2, WP6 and WP7 relevant to the 
development of the modules that will be integrated in the system and the feedback needed 
from the users with respect to requirements and evaluation. 

In order to promote interoperability, extensibility and sharing, WP5 reuses and extends 
existing standards for defining the vocabulary of the annotations, as well as the patterns for 
associating these vocabularies with the generated assets. More specifically, the metadata 
vocabularies are defined in the Web Ontology Language (OWL 21 [12]), the W3C standard for 
defining and sharing ontologies. Similarly, the metadata are associated with assets using the 
Web Annotation Data Model [47], which provides an extensible and interoperable 
framework for expressing annotations. This model was published by the W3C Web 
Annotation Working Group as a Recommendation (since 23 February 2017), describing a 
common approach to express annotations in a manner that is simple and convenient, while 
at the same time enables more complex requirements. For geospatial data, WP5 capitalises 
on GeoSPARQL [39] an extension of SPARQL which is used to offer representation and 
                                                      

1 https://www.w3.org/TR/owl-profiles/ 

Figure 1 Logical dependencies of WP5 with the other WPs 
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querying in geospatial data. This standard was proposed by Open Geospatial Consortium 
(OGC). 

The population of the EOPEN ontologies is done automatically by mapping the information 
provided as input by other components of the system. To this end, WP5 develops the 
necessary algorithms and interfaces for the structural and semantic mapping of data among 
different schemas and vocabularies, creating interlinked RDF-based knowledge structures 
pertinent to the assets derived by the EOPEN modules. For geospatial data, we use 
GeoTriples [24], otherwise the mappings are performed procedurally by custom-developed 
services. 

Finally, WP5 provides the reasoning layer, whose purpose is to address WP5’s reasoning 
requirements, in the form of ontology-based axiomatisations (e.g. complex class descriptions 
and property axioms), inference rules and data-driven analytics (e.g. for tweet localisation). 
The underlying reasoning techniques will afford the derivation of data- and knowledge-
driven interpretations, enabling the system to abstract from incoming information and 
enrich the underlying knowledge graphs. This combination of semantically rich and 
interlinked knowledge graphs will foster the retrieval of data based on semantic 
relationships and not simply on keyword-based search.  

Figure 2 presents the conceptual architecture of WP5 that consists of the following entities: 

• Knowledge Base (KB), that provides native RDF storage and querying services 

• Population, which implements the mapping services of input provided by other 
components, implementing linked data design principles  

• Reasoning and context enrichment, which semantically enriches the content of the 
KB 

• Localisation for extracting locations mentioned in tweets 

• Linked Data, which implements linked data design principles to further enrich the 
derived knowledge  

The remainder of this document is structured as follows: Section 2 overviews the adopted 
methodology for the creation of the EOPEN ontologies. Section 3 describes the user 
requirements that are relevant to WP5 modelling and reasoning framework. Section 4 
reports the modelling specifications of the EOPEN ontologies. Section 5 reviews the relevant 
literature for reasoning, ontologies, named entity recognition and annotation models. 
Section 6 presents the first version of the EOPEN ontologies guided by the specifications 
(section 4), along with the modelling insights derived from the literature analysis (section 5). 
Section 7 describes the basic principles that underpin the preliminary version of WP5’s 
reasoning framework towards intelligent reasoning, context enrichment and localisation 
services. Section 8 presents how the created models are applied on a set of examples for 
validation purposes, while Section 9 discusses the results and concludes the document. 



D5.1 – V1.0  

 

Page 10 

 

Figure 2 Conceptual architecture of the modules involved in WP5 
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2 METHODOLOGY FOR MODELLING REQUIREMENTS 

2.1  Ontology development 101 methodology 

There are many ways to model a domain using ontologies and the ontology development is 
essentially an iterative process. In this sense, there are several methodologies for ontological 
engineering such as On-To-Knowledge (OTK) [53], METHONTOLOGY [10], United Process for 
Ontologies (UPON) [34] and Ontology Development 101 [35]. Most of these methodologies 
introduce common features and development guidelines. 

For the purposes of the EOPEN ontological framework, we adopted the methodology of 
Ontology Development 101 which consists of the following iterative steps: 

Step 1. Determination of the domain and scope of the ontology  
Step 2. Reuse of existing ontologies 
Step 3. Enumeration of important terms 
Step 4. Definition of the classes and the class hierarchy 
Step 5. Definition of the properties  
Step 6. Creation of instances. 

In literature, the determination of the domain and scope of the ontology can be 
documented in a template-based report called “Ontology Requirements Specification 
Document” (ORSD) [55]. This document allows the systematic specification of “why the 
ontology is being built”, “what its intended uses are”, “who the end-users are”, and “which 
requirements the ontology should fulfil”. In particular, the ORSD report contains the 
following fields: 

1. Purpose: the main general goal of the ontology (i.e. how the ontology will be used in 
EOPEN) 

2. Scope: the general coverage and the degree of detail of the ontology 
3. Implementation language: the formal language of the ontology 
4. Intended end-users: the intended end-users expected for the ontology 
5. Intended uses: the intended uses expected for the ontology 
6. Ontology requirements 

a. Non-functional requirements: the general requirements or aspects that the ontology 
should fulfil, including optional properties for each requirement 

b. Functional requirements: the content specific requirements that the ontology should 
fulfil in the form of groups of competency questions and their answers, including 
optional priorities for each group and for each competency questions 

7. Pre- Glossary of terms 
a. Terms from competency questions: the list of items included in the competency 

questions and their frequencies 
b. Terms from answers: the list of terms included in the answers and their frequencies 
c. Objects: the list of objects included in the competency questions and their answers 

Before presenting the EOPEN ORSD (section 4), we outline the WP5 relevant application 
context within which the EOPEN ontology is deployed (section 3). 
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3 USER REQUIREMENTS RELEVANT TO ONTOLOGIES AND 
REASONING 

This section presents the application context relevant to WP5, describing relevant user 
requirements that drive the development of the EOPEN modelling and reasoning framework. 
To this end, we have investigated the description of the context and the users for each 
scenario, as well as the requirements that have been presented in D2.2 “User 
requirements”. These requirements are translated into technical requirement in D6.1 
“System Requirements and Architecture”. Table 1 presents the user requirements that are 
relevant to the WP5 representation and reasoning framework, briefly describing the main 
functionalities and services that need to be supported. 

Table 1 User requirements relevant to WP5 representation and reasoning framework 

User 
Requirement 

ID (D2.2) 
Description WP5 Relevance / Dependency 

PUC1_GA2 
As an environmental manager 
I want to retrieve real-time 
data 

• Support searching functionality over 
the KB to retrieve recently collected 
metadata 

PUC1_GA3 
As an environmental manager 
I want to retrieve semantic 
information 

• Support searching functionality over 
the KB with the collected metadata 

PUC1_GA7 
As an environmental manager 
I want to retrieve the history 
of each event 

• Support searching functionality and 
interface over the KB to get historical 
metadata which refer to an event 

PUC2_GB4 
As an administrator I want to 
access and manage satellite 
data 

• Support searching functionality over 
the KB with the collected metadata 

• Provide the ability to manage the 
metadata over the KB 

PUC3_GC2 
As an administrator I want to 
easy access and manage the 
datasets 

• Support searching functionality over 
the KB with the collected metadata 

• Provide the ability to manage the 
metadata over the KB 

PUC3_GC5 
As an administrator I want to 
select an area of interest 

• Provide the ability to retrieve the 
collected metadata which refer to an 
area of interest from the KB  

PUC3_GC7 
As an administrator I want to 
browse historical operations 

• Support searching functionality and 
interface over the KB to find the 
history of metadata 

PUC3_GC12 
As a user I want to retrieve 
relevant tweets with specific 
keywords 

• Support searching functionality and 
interface over the KB to get metadata 
that contain specific keywords 
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4 ONTOLOGY REQUIREMENT SPECIFICATION DOCUMENT 

This section presents the ORSD which provides the specification of the EOPEN ontological 
framework. The ORSD may be further elaborated and extended as the system functionalities 
will evolve to take into account hidden and unrevealed aspects that are not covered by the 
current ontology requirements 

EOPEN ORSD 

1 Purpose 

 The purpose of the EOPEN representation framework is to provide the ontological 
structures and vocabularies (ontologies) to capture the results of the EOPEN 
analysis modules in a reusable and interoperable manner. To this end, the 
ontological framework will provide the annotation model needed in order to 
support data modelling, integration and reasoning over the distilled information. 
These include: 

• Constructs for capturing metadata of non-EOP data, such as tweet-related 
information, event detection, etc. 

• A structured model and format to enable annotations and assertions to be 
defined, shared and reused across both within the EOPEN application 
context but also within different hardware and software platforms.  

2 Scope 

 The EOPEN ontology has to formally capture: 

• Social media information derived from twitter crawling and results 
analysing. 

• Localisation information derived from the location extracted from the 
tweet. 

• Topic information derived from the combination and analysis of the 
extracted information. 

• Events information derived from the event detection analysis. 

• Roads, rail and waterway information derived from satellite images. 

• Rice crop information derived from satellite images. 

A key design choice underpinning the engineering of the EOPEN ontologies is the 
adherence to a pattern-based approach, so as to capitalise on a modular, 
extensible and interoperable framework for expressing annotations and achieve a 
better degree of knowledge sharing, reuse and interoperability.  

3 Implementation Language 

 The ontology will be implemented in OWL 2 [12], the officially recommended 
language by W3C for knowledge representation in the Semantic Web. 

4 Intended End-Users 

 The EOPEN system considers different types of end users depending on the 
application context, who will interact with the generated knowledge through 
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authoring tools: 

• PUC1: Administration, related to civil protection and environment 

Administration offices and firefighters: Administration offices related to civil 
protection or environmental issues and firefighters who want to be aware of 
real-time events and historical data of events to manage critical issues (eg. 
fire, flood). 

• PUC2: Decision making, related to food security in South Korea 

Research Institutes and Science Centres: Korea Rural Economic Institute and 
the National Institute of Agricultural Science who want to access food security 
related information such as rice maps and rice yield estimates. KREI and NIAS 
then share such relevant research findings and needs of producers and 
consumers to the government institutes which then deliver it to the Congress 
of South Korea. 

• PUC3: System repairs and reindeer herding environments 

Government agencies and reindeer researchers: Government agencies and 
reindeer researchers who want to access data to manage system repairs (e.g. 
road, rail and waterway) or select the ideal environment for reindeer herding. 

5 Ontology Requirements 

 Non-functional requirements 

 NFR1. The ontology should adopt available standards whenever possible and 
reuse existing ontologies and vocabularies 

 Functional requirements: Groups of competency questions 

 The list of Competency Questions (CQ) below has been derived by studying the 
Pilot Use Case scenarios and user requirements. The questions have been also 
elicited through the direct interaction with technical partners. To this end, a 
simulation example has been carried out in order to collect additional technical 
and user-related requirements that drive the development of the annotation 
models. 

Tweets 

CQ1  Which is the identifier of the tweet? 
CQ2  Which is the tweet URL? 
CQ3  Is the tweet a top ranked tweet? 
CQ4  Which is the latitude of the tweet? 
CQ5  Which is the longitude of the tweet? 
CQ6  In which city does the tweet refer to? 
CQ7  Which is the location of the user who wrote the tweet? 
CQ8  Which is the dbpedia URL for the location of the user? 
CQ9  Which is the dbpedia URL for the location where the tweet refers to? 
CQ10  Which are the labels found in the tweet? 
CQ11  Which is the accuracy of each label? 
CQ12  Which is the name of each label? 
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CQ13  Which is the annotation of a tweet? 
CQ14  In which cluster does the label belong? 
CQ15  What other labels belong in the same cluster? 
CQ16  In which collection does the annotation belong to? 
CQ17  What other annotations are part of this collection? 
CQ18  Which is the resource that the annotation is connected with? 
CQ19  Which is the cluster annotation of a collection? 
CQ20  Which is the cluster annotation of a cluster body? 
CQ21  Which is the time of the tweet? 
CQ22  Which is the date of the tweet? 
CQ23  Which is the topic of the tweet? 
CQ24  Which is the event of the tweet? 
CQ25  What are the hashtags of the tweet? 
CQ26  What are the mentions/tags of the tweet? 
CQ27  Is there an image in the tweet? 
CQ28  Is there a video in the tweet? 
CQ29  Is there a URL in the tweet? 
CQ30  How many people reposted the tweet? 
CQ31  How many people marked the tweet as favorite? 
CQ32  How many people replied to the tweet? 
CQ33  How many people liked the tweet? 
CQ34  How many followers does the user (who posted the tweet) have? 
CQ35  Which is the user’s (who posted the tweet) profile URL? 
CQ36  Which is the user’s (who posted the tweet) username? 
CQ37  Are there any emojis in the tweet? 

Events 

CQ38  Which events were detected? 
CQ39  Which is the geometry polygon the event refers to? 
CQ40  Which is/are the point/-s the event refers to? 
CQ41  Which words does the event contain? 
Topics 
CQ42  Which topics were detected? 
CQ43  Which is the geometry polygon the topic refers to? 
CQ44  Which is/are the point/-s the topic refers to? 
CQ45  Which words does the topic contain? 
CQ46  Which is the BabelSynset identifier for each term? 
CQ47  Which is the BabelNet URL for each term? 
CQ48  Which is the Babelfy source for each term? 
CQ49  Which is the dbpedia URL for each term? 
CQ50  Which is the Babelfy score for each term? 
CQ51  Which is the Babelfy coherence score for each term? 
CQ52  Which is the Babelfy global score for each term? 
CQ53  Which is the WordNet identifier for each label in topic detection?  
CQ54  Which is the level 1 hypernym WordNet identifier for each term? 
CQ55  Which is the level 2 hypernym WordNet identifier for each term? 
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CQ56  Which is the level 3 hypernym WordNet identifier for each term? 
CQ57  Is there another term with the same level 1 WordNet identifier? 
CQ58  Is there another term with the same level 2 WordNet identifier? 
CQ59  Is there another term with the same level 3 WordNet identifier? 

Location 

CQ60  What is the weather like in a location? 
CQ61  What is the temperature of a location? 
CQ62  What is the climate of a location? 

Fields and policies 

CQ63  Which is the identifier of the field?  
CQ64  In which satellite image is the field depicted? 
CQ65  Does the field contain rice? 
CQ66  Does the field conform to the agricultural policies which are applicable in 

this area? 
CQ67  Does the field conform to environmental rules? 
CQ68  Which is the geolocation of a field? 

System repairs management 

CQ69  Which is the identifier of the image? 
CQ70  In which satellite image is the road depicted? 
CQ71  Does the road need maintenance? 
CQ72  Which is the geolocation of the road? 
CQ73  In which satellite image is the rail depicted? 
CQ74  Does the rail need maintenance? 
CQ75  Which is the geolocation of the rail? 
CQ76  In which satellite image is the waterway depicted? 
CQ77  Does the waterway need maintenance? 
CQ78  Which is the geolocation of the waterway? 
CQ79  Is the image inside an area of interest? 
CQ80  Which metadata refers to the area of interest? 
CQ81  What is the history of an area of interest? 

 

The competency questions cover a very exhaustive list of aspects relevant to the EOPEN 
domain. Though the initial set of EOPEN ontologies will not cover this extended list and 
depth of detail, they provide the modular structures that will enable the future extensibility 
of the model. 
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5 STATE OF THE ART 

This section provides an overview on the relevant state of the art with respect to knowledge 
representation languages, already existing ontologies addressing project-relevant fields, as 
well as natural language approaches to address the localisation task. More specifically, we 
present the basics of Description Logic (DL) languages [2], on which the official W3C 
recommendation for creating and sharing ontologies in the Web (OWL 2) is grounded, the 
different OWL 2 species, as well as relevant rule-based languages. We then provide a briefly 
review on the representative ontologies that have been proposed in the literature for 
modelling core aspects relevant to the EOPEN application domain that fall into WP5’s 
modelling requirements. Lastly, a brief presentation of the state-of-the-art in named entity 
recognition (NER) is included, which demonstrates the developments that drive the inner 
workings of the localisation procedure. 

5.1  Web Ontology Language 

In the literature, ontologies have been widely used as an effective way for modelling domain 
information because they can represent and organise information, context and relationships 
more accurately. In addition, they offer easy expandability by merging, expanding and 
combining parts of existing ontologies into new ones. 

Ontologies are models used to capture knowledge about some domain of interest. Formally 
speaking, ontologies are explicit formal specifications of shared conceptualizations [16, 54]. 
They represent abstract views of the world including the objects, concepts, and other 
entities that are assumed to exist in some area of interest, their properties and the 
relationships that hold among them. Their expressivity and level of formalisation depend on 
the knowledge representation language used.  

Within the Semantic Web, which is an extension of the current Web that aims to establish a 
common framework for sharing and reusing data across heterogeneous sources, ontologies 
play a key role. The Semantic Web vision is to make the semantics of web resources explicit 
by attaching to them metadata that describe meaning in a formal, machine-understandable 
way. In this effort, the Web Ontology Language [6] has emerged as the official W3C 
recommendation for creating and sharing ontologies on the Web. In the rest of this section, 
we present the basics of Description Logic languages, on which OWL semantics are 
grounded, the different OWL species, as well as relevant rule-based languages. 

5.1.1   DL Reasoning 

Description Logics [2] are a family of knowledge representation formalisms characterised by 
logically grounded semantics and well-defined reasoning services. The main building blocks 
are concepts representing sets of objects (e.g. Field), roles representing relationships 
between objects (e.g. contains), and individuals representing specific objects (e.g., 
RiceCrop). Starting from atomic concepts, such as Field, arbitrary complex concepts can 
be described through a rich set of constructors that define the conditions on concept 

membership. For example, the concept hasNeighbour.Field describes those objects 
that are related through the hasNeighbour role with an object from the concept Field; 
intuitively, this corresponds to all those fields that are neighbours with at least one field. A 
DL knowledge base K typically consists of a TBox T (terminological knowledge) and an ABox 
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A (assertional knowledge). The TBox contains axioms that capture the possible ways in which 
objects of a domain can be associated. For example, the TBox axiom RiceCrop ⊑ Crop 
asserts that all objects that belong to the concept RiceCrop, are members of the concept 
Crop too. The ABox contains axioms that describe the real world entities through concept 
and role assertions. For example, Field(field_id) and isLocated(field_id,Korea) 
express that RiceCrop is a crop and it is located in Korea. Table 2 summarises the set of 
terminological and assertional axioms. 

Table 2 Terminological and assertional axioms 

Name Syntax Semantics 

Concept inclusion C ⊑ D C  D 

Concept equality C ≡ D C = D 

Role Equality R ≡ S R=S 

Role inclusion R ⊑ S R S 

Concept assertion C(α) α ∈ C 

Role assertion R(α,b) (α, b) ∈ R 

5.1.2   DL reasoning services 

DLs come with a set of powerful reasoning services, for which efficient, sound and complete 
reasoning algorithms with well understood computational properties are available. Example 
state-of-the-art implementations include Pellet [50] Racer [17], Fact++ [56] and Hermit [11]. 

Assuming a DL knowledge base K = (T, A), typical reasoning services include: 

• Subsumption: A concept C is subsumed by D in T (written T ⊨ C ⊑ D), iff C  D for all 
interpretations .  

• Equivalence: Two concepts C and D are equivalent in T (written T ⊨ C ≡ D) iff C  D 
and D  C for all interpretations . 

• Disjoint: A concept C is disjoint to a concept D in T iff in every interpretation  it holds 
that C ≠ . 

• Consistency: The ABox A is consistent w.r.t. T iff if there is an interpretation that is a 
model of both A and T. 

• Instance checking: The individual α is an instance of C (w.r.t. K) (written K ⊨ C(α)) iff 
α ∈ C holds for all interpretations  of K. 

• Realisation: The realisation of an instance α w.r.t. to K includes finding the most 
specific concepts C for which a ∈ C holds for all interpretations  of K. 

Hence, through subsumption one can derive the implicit taxonomic relations among the 
concepts of a terminology. For example, given the axiom SownField ≡ Field ⊓ 

contains.Crop, one can infer that Field subsumes SownField.  

Satisfiability and consistency checking are useful to determine whether a knowledge base is 
meaningful at all. Satisfiability checking enables the identification of concepts for which it is 
impossible to have members under any interpretation (for example, an unsatisfiable 
concept, though trivial, is SownField ⊓  SownField). Consistency checking enables the 
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identification whether the set of assertions comprising the knowledge base is admissible 
with respect to the terminological axioms. For example if EmptyField and SownField are 
asserted as disjoint concepts, then the presence of both SownField(field_id) and 
EmptyField(field_id) leads to inconsistency. 

Instance checking denotes the task of finding whether a specific individual is an instance of a 
given concept. Realisation of an individual, a more generic form of instance checking, returns 
all (most specific) concepts from the knowledge base that a given individual is an instance of. 
Its dual is the retrieval problem that given a specific concept C, it returns all individuals that 
belong to this concept. This reasoning service is the central to realise the task of recognition 
of situation types. 

Falling under the classical logics paradigm, reasoning in DLs adopts the open-world 
assumption. Intuitively, if a fact α holds only in a subset of the models of the knowledge base 

KB, then we can conclude neither KB ⊨ α nor KB ⊨ α. For example, if the only available 

knowledge regarding the owners of a field is the assertion isOwnedBy(Alice,field_id), 
we cannot deduce based on it alone that no one else owns the field. In contrast, formalisms 
adhering to the closed-world assumption make the common-sense conjecture that all 
relevant information is explicitly known, so all unprovable facts should be assumed not to 
hold. In our example, this amounts to concluding that Alice is the sole owner of this field. 

Hence, closed-world reasoning can be intuitively understood as reasoning where from KB ⊨ 

α, one concludes KB ⊨ α. Such kind reasoning should not be confused however with closed 

domain reasoning, which involves reasoning only over explicitly known individuals. 

5.1.3   OWL and OWL 2 

The OWL is a knowledge representation language widely used within the Semantic Web 
community for creating ontologies. The design of OWL and particularly the formalisation of 
the semantics and the choice of language constructors have been strongly influenced by DLs. 
OWL comes in three dialects of increasing expressive power: OWL Lite, OWL DL and OWL 
Full. OWF Full is the most expressive of the three: it neither imposes any constraints on the 
use of OWL constructs, nor lifts the distinction between instances (individuals), properties 
(roles) and classes (concepts). This high degree of expressiveness comes however at a price, 
namely the loss of decidability that makes the language difficult to implement. As a result, 
focus has been placed on the two decidable dialects, and particularly on OWL DL, which is 
the more expressive of the two. 

Despite the rich primitives provided for expressing concepts, OWL DL has often proven 
insufficient to address the needs of practical applications. This limitation amounts to the DLs 
style model theory used to formalise its semantics, and particularly the tree model property 
[57] conditioning DLs decidability. As a consequence, OWL can model only domains where 
objects are connected in a tree-like manner. This constraint is quite restrictive for many real-
world applications, including the ambient intelligence domain, which requires modelling 
general relational structures. 

Responding to this limitation and to other drawbacks that have been identified concerning 
the use of OWL in different application contexts throughout the years, the W3C working 
group produced OWL 2 [12]. OWL 2 is a revised extension of OWL, now commonly referred 
to as OWL 1. It extends OWL 1 with qualified cardinality restrictions; hence one can assert 
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for example that a social activity is an activity that has more than one actor: 
SocialActivity ≡ Activity ⊓ ≥ 2hasParticipant.Person.  

Another prominent OWL 2 feature is the extended relational expressivity that is provided 
through the introduction of complex property inclusion axioms (property chains). To 
maintain decidability, a regularity restriction is imposed on such axioms that disallow the 
definition of properties in a cyclic way. Hence, one can assert the inclusion axiom 
locatedIn ○ containedIn ⊑ locatedIn making it possible to infer that if a person is 
located for example in the bedroom of her house, then she is located in her house as well; 
however, it is not allowed to use both the aforementioned axiom and the axiom 
containedIn ○ locatedIn ⊑ containedIn as this leads to a cyclic dependency. Three 
profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL, trade portions of expressive power for 
efficiency of reasoning targeting different application scenarios. 

5.1.4   Rules 

To achieve decidability, DLs, and hence OWL, trade some expressiveness for efficiency of 
reasoning. The tree-model property is one such example. It conditions the tree-shape 
structure of models, ensuring decidability, but at the same time it severely restricts the way 
variables and quantifiers can be used, dictating that a quantified variable must occur in a 
property predicate along with the free variable. As a result, it is not possible to describe 
classes whose instances are related to an anonymous individual through different property 
paths. To leverage OWL’s limited relational expressivity and to overcome modelling 
shortcomings that OWL alone would be insufficient to address, a significant body of research 
has been devoted to the integration of OWL with rules.  

A proposal towards this direction is the Semantic Web Rule Language (SWRL) [20], in which 
rules are interpreted under the classical first order logic semantics. Allowing concept and 
role predicates to occur in the head and the body of a rule without any restrictions, SWRL 
maximises the interaction between the OWL and rule components, but at the same time 
renders the combination undecidable. To regain decidability, several proposals have 
explored syntactic restrictions on rules [31, 46] as well as their expressive intersection of 
Description Logic Programs (DLP) [15]. The DL-safe rules introduced for example in [31] 
impose that rule semantics apply only over known individuals. It is worth noting that in 
practice DL reasoners providing support for SWRL actually implement a subset of SWRL 
based on this notion of DL-safety.  

Taking a different perspective, a number of approaches have investigated the combination 
of ontologies and rules based on mappings of a subset of the ontology semantics on rule 
engines. For instance, [21] defines the pD* semantics as a weakened variant of OWL Full, 
e.g., classes can be also instances, and they are extended to apply to a larger subset of the 
OWL vocabulary, using 23 entailments and 2 inconsistency rules. Inspired by the pD* 
entailments and DLP, the semantics of the OWL 2 RL profile is realised as a partial 
axiomatisation of the OWL 2 semantics in the form of first-order implications, known as OWL 
2 RL/RDF rules. User-defined rules on top of the ontology allow expressing richer semantic 
relations that lie beyond OWL’s expressive capabilities, and couple ontological and rule 
knowledge.  
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SPARQL [18] is a declarative language recommended by the W3C for extracting and updating 
information in RDF graphs. It is an expressive language that allows the description of quite 
complex relations among entities. The semantics and complexity of the SPARQL query 
language have been fairly studied theoretically, showing that SPARQL algebra has the same 
expressive power as relational algebra [38] [19]. Although SPARQL is mostly known as a 
query language for RDF, by using the CONSTRUCT graph pattern, it is able to define SPARQL 
rules that can create new RDF data, combining existing RDF graphs into larger ones. Such 
rules are defined in the interpretation layer in terms of a CONSTRUCT and a WHERE clause: the 
former defines the graph patterns, i.e. the set of triple patterns that should be added to the 
underlying RDF graph upon the successful pattern matching of the graphs in the WHERE 
clause. The SPARQL Inferencing Notation (SPIN) [52] constitutes an effort to ease the 
definition and execution of SPARQL rules on top of RDF graphs. In SPIN, SPARQL queries can 
be stored as RDF triples together with any RDF domain model, enabling the linkage of RDF 
resources with the associated SPARQL queries, as well as sharing and reuse of SPARQL 
queries. SPIN supports the definition of SPARQL inference rules that can be used to derive 
new RDF statements from existing ones through iterative rule application. 

5.2  Ontologies relevant to the EOPEN domain 

In this section we describe the languages and extensions which are used for representing 
and querying geospatial data. We also describe some languages which transform data into 
RDF format and some tools for handling geospatial information. 

5.2.1   Geospatial data representing, querying and saving 

Since geospatial data are available in many cases via the Web in linked open data cloud [24], 
there comes the need to exploit them for decision making issues. This need emerged lately, 
as in the past the data that were available did not contain any geospatial information. The 
following languages are responsible for geospatial data representation and querying. 

stRDF[23][24] is a new version of RDF for representing geospatial data that change over 
time. It is based in the philosophy of constraint databases and more specifically CSQL. stRDF 
means spatial/temporal RDF and is responsible for adding new datatypes to spatial and 
temporal literals by extending RDF which represents only thematic metadata. The 
development of stRDF contains two steps: development of sRDF and stRDF. sRDF is an RDF 
extension which allows the representation of spatial data except from thematic. stRDF is an 
RDF extension which allows the representation of thematic and spatial data with a temporal 
dimension. 

Table 3 An example of using stRDF in GeoNames data that represent information about the 
greek town Olympia. Information contain data about geometry and burnt areas. 

geonames:26 rdf:type dbpedia:Town.  

geonames:26 geonames:name "Olympia". 

geonames:26 strdf:hasGeometry "POLYGON((21 18,23 18,23 21,21 21,21 18)); 

<http://www.opengis.net/def/crs/EPSG/0/4326>"^^strdf:WKT. 

noa:BA1 rdf:type noa:BurntArea; 
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stSPARQL[23][24] is a new version of SPARQL for representing geospatial data. It adds spatial 
terms in SELECT, FILTER and HAVING and also supports update operations (INSERT, DELETE 
and UPDATE) of stRDF triples. Spatial terms may be spatial literals, query variables 
connected to spatial literals, results of set or geometric operations on spatial terms. 
stSPARQL is the querying language which is associated with stRDF language. 

Table 4 An example for returning the names of towns that have been affected by fires. 

 

 

 

 

 

 

 

 

GeoSPARQL[24] is an extension of SPARQL which is used to offer representation and 
querying in geospatial data. This standard was proposed by Open Geospatial 
Consortium (OGC). It provides a vocabulary which can be used in geospatial RDF graphs and 
SPARQL queries. The vocabulary contains three main classes: ogc:SpatialObject which 
represents all feature and geometry objects that can be represented spatially, ogc:Feature 
which represents all feature objects and ogc:Geometry which represents all geometry 
objects. GeoSPARQL also offers an amount of properties for geometries handling in order to 
investigate the topological relationships among them. For example, ogc:equals, 
ogc:intersects, ogc:crosses, ogc:touches which return a Boolean value which corresponds to 
the geometries equality, intersection etc, while others eg. ogcf:distance, ogcf:intersection, 
ogcf:union return other value types (String, integer, double etc.) which correspond to the 
distance, intersection points etc. 

5.2.2   Data transformation to RDF 

Another factor that needs attention is that a lot of the available data are in formats other 
than RDF (eg. HTML). In order to exploit these data there comes the need to transform the 
non-RDF data which are available on the web into RDF format. Many frameworks have been 
developed lately for this scope and some of them are presented in this section. [4] 

R2RML2[44] is a W3C recommendation language which creates mappings by using existing 
relational data and converting to RDF data model. The structure and the vocabulary are 

                                                      

2 https://www.w3.org/TR/r2rml/  

strdf:hasGeometry "POLYGON((0 0,0 2,2 2,2 0,0 0))"^^strdf:WKT. 

noa:BA2 rdf:type noa:BurntArea; 

strdf:hasGeometry "POLYGON((3 8,4 9,3 9,3 8))"^^strdf:WKT. 

SELECT ?name 

WHERE {  

?t a dbpedia:Town;  

geonames:name ?name;  

strdf:hasGeometry ?tGeo. 

?ba a noa:BurntArea;  

strdf:hasGeometry ?baGeo. 

FILTER(strdf:intersects(?tGeo,?baGeo))} 

https://www.w3.org/TR/r2rml/
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defined by the user. The input is a relational database which conforms to a specific database 
schema. R2RML mappings are written in RDF Turtle syntax. R2RML mapping uses the logical 
tables (base table, view or valid SQL query) to retrieve data from the relational database. 
Triples map is a rule responsible for mapping the relational table to RDF by converting each 
row of the logical table into triples. Triples map rule contains a subject map, which creates 
all subjects IRIs from the logical table, and multiple predicate-object maps which consist of 
predicate and object maps. The result of this procedure are triples which are exported by 
the combination of subject, predicate and object maps. 

 

Figure 3 R2RML mapping overview 

RDF Mapping language (RML)3 [9][8] is a language responsible for converting data from 
multiple non-RDF formats into RDF. RML gets as input formats like XML, JSON, CSV, 
relational databases or RDF triplestores using SPARQL and creates a semantic representation 
of them by creating the appropriate rules or mappings. It provides a vocabulary for data 
defining while the user is able to define the iterator pattern about the way that the source 
data should be accessed.  

                                                      

3 http://rml.io/ 

http://rml.io/
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Figure 4 RML mapping overview 

5.2.3   Geospatial tools 

In this section we present some systems which are responsible for handling (converting, 
saving, querying) geospatial data. The tools provide a more complete solution, with 
enhanced functionality compared to the languages and standards that were presented in 
previous sections.  

Geosensor [42] is a web-based system which detects change detection from satellite images 
using event detection from news items and social media content. Its architecture is based in 
semantic web technologies and consists of 11 components divided in three layers: change 
detection, event detection and semantic layer. Change detection layer is responsible for 
images downloading (Image Aggregator), storing (Hadoop Distributed File System) and 
change detecting (Change Detector) by computing pixels ratio from two images using the 
change detection algorithm. Event detection layer combines each land cover with an event 
and a possible explanation of that.  In order to achieve that it scans specific news agencies 
and social media to collect news (News Crawler), stores news data (Apache Cassandra), 
processes stored results from Cassandra every half hour (Event Detector), combines news 
with the geolocation of the events (Lookup Service) and combines named entities which are 
extracted from events with a Flickr image, building a semantic web (Entity Extractor). 
Semantic layer is responsible for the connection between change detection layer and event 
detection layer. It uses multiple technologies: GeoTriples to convert geospatial data to RDF, 
Strabon to store them, SemaGrow for the SPARQL queries processing and Sextant as a web 
interface for handling (exploring, interacting, visualising) linked geospatial data.  

GeoTriples[24] is a tool for transforming geospatial data from various formats into RDF. It 
comprises of three components: mapping generator, mapping processor and 
stSPARQL/GeoSPARQL evaluator. The mapping generator gets as input a file (ESRI Shapefiles, 
XML, GML, KML, JSON, GeoJSON and CSV documents or spatially-enabled relational 
databases (e.g., PostGIS and MonetDB)) and creates a mapping using RML and R2RML (rules) 
which is based on the GeoSPARQL vocabulary. As an optional step, the user has the 
opportunity to change this mapping according to his requirements. The mapping processor is 
the component which is responsible for the RDF graph generation by using the result of the 
mapping generator. The output can be expressed in a variety of RDF syntaxes such as Turtle, 
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RDF/XML, Notation3 or N-Triples. The stSPARQL/GeoSPARQL evaluator is a component for 
querying in a relational database using a R2RML mapping. 

 

Figure 5 Geotriples tool architecture 

Strabon4[25] is an RDF triplestore for storing geospatial data that change over time. It 
supports two extensions of SPARQL: stSPARQL, which accesses data in stRDF form and 
GeoSPARQL, which queries geospatial data. It is mainly used to represent temporal 
dimensions among the data by using events or facts that change over time as it also offers 
some temporal functions. It extends Sesame RDF triplestore by supporting and handling 
thematic, spatial and temporal data. Strabon 3.0 version uses Sesame 2.6.3 version and has 
three modules: storage manager, query engine and POSTGIS. Storage manager creates two 
B+ tree two-column indices by receiving a predicate table. Query processing consists of four 
elements: a parser, an optimiser, an evaluator and a transaction manager. The parser 
generates an abstract syntax tree, which is mapped later and creates a query tree. Query 
tree is optimised according to Strabon optimisation techniques (stSPARQL extension 
functions and DBMS informing about spatial joins in stSPARQL queries) and sent to the 
evaluator to create the SQL query for evaluating PostgreSQL. The evaluator receives the 
results and carries out any needed operation. Results are formatted according to the 
selected data format. 

Sparqlify[24] is a tool for converting SPARQL to SQL. It gives users the opportunity to search 
a relational database by querying data in SPARQL by using a mapping language which is 
similar to R2RML but has a different syntax.  This opportunity removes the need of 

                                                      

4 http://www.strabon.di.uoa.gr/  

http://www.strabon.di.uoa.gr/
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maintaining two datastores for both SPARQL and SQL queries execution, which is the main 
advantage of this method, but on the other hand it limits query flexibility in many cases. This 
drawback comes from the translation between SPARQL and SQL as limited SPARQL queries 
can be supported in SQL. Apart from SPARQL main features Sparqlify supports some 
geospatial features like st_intersects, which checks if two geometries have mutual points. 
Currently, Sparqlify supports access to the OpenStreetMap database as a linked data 
interface for the project LinkedGeoData. 

Geometry2RDF[28] was a tool for transforming geospatial data into RDF. The tool took as 
input data stored in relational databases and produced as an output the RDF graph. The user 
could configure the properties that concerned him. Geometry2RDF tool was based in Jena 
and GeoTools libraries. Though the tool is no longer maintained by its developers, it was the 
first tool that was dealing with this issue and has been used as a basis to develop the first 
version of TripleGeo tool. Nowadays, Geometry2RDF5 is offered as a library for generating 
RDF files. It is based in Jena and connects to Oracle geospatial databases. 

TripleGeo[36] is a tool which can convert data from many type formats into RDF graph. Input 
data can be in relational database format (PostgreSQL/PostGIS, Oracle Spatial and Graph, 
MySQL and MS SQL Server) or raw files (ESRI shapefiles, GeoJSON, GML, KML, GPX and CSV). 
It contains three modes: graph, stream and RML mode. Graph mode is responsible for the 
transformation of the input data into RDF. Stream mode is handling each entry of the input 
data in a different way. RML mode exploits the RML mappings in order to convert the data. 
The disadvantage of this tool is that stream and graph modes contain only four attributes 
(ID, name, geometry and category) for each tuple. This fact results in losing an amount of 
information which is available in the dataset. 

Ontop4theWeb[4] is a tool that supports querying data which are available on the Web in 
table or REST API format. The tool handles data as relational as it converts the web data to 
virtual table operators using SQL. It allows SQL querying by creating R2RML mapping rules to 
convert data in RDF format. When a SPARQL query is created, the query is transformed to 
SQL and results are returned in RDF format. A time window is available, where a user can 
retrieve data. If time passes, data need to be re-imported.  Ontop4theWeb is based in Ontop 
which is the reason why it handles OBDA and R2RML. In the back-end component a madIS 
system is developed for extending a SQLite database. 

5.3  Annotation models  

Annotating, the act of creating associations between distinct pieces of information, is a 
pervasive activity online in many guises. Annotations are typically used to convey 
information about a resource or associations between resources. Simple examples include a 
comment or tag on a single web page or image, or a blog post about a news article. In this 
section, we present the Web Annotation Data Model, which has inspired the EOPEN 
annotation model described in Section 6. 

                                                      

5 http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/  

http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/151-geometry2rdf/
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5.3.1   Web Annotation Data Model 

The Web Annotation Data Model6 specification describes a structured model and format to 
enable annotations to be shared and reused across different hardware and software 
platforms. This interoperability may be either for sharing with others, or the migration of 
private annotations between devices or platforms. The shared annotations must be able to 
be integrated into existing collections and reused without loss of significant information. 
Common use cases can be modelled in a manner that is simple and convenient, while at the 
same time enabling more complex requirements, including linking arbitrary content to a 
particular data point or to segments of timed multimedia resources.  

The specification provides a specific JSON format for ease of creation and consumption of 
annotations based on the conceptual model that accommodates these use cases, and the 
vocabulary of terms that represents it. The Web Annotation Vocabulary7 specifies the set of 
RDF classes, predicates and named entities that are used by the Web Annotation Data 
Model. It also lists recommended terms from other ontologies that are used in the model, 
and provides the JSON-LD Context and profile definitions needed to use the Web Annotation 
JSON serialisation in a Linked Data context. 

An annotation is considered to be a set of connected resources, typically including a body 
and target, and conveys that the body is related to the target. The exact nature of this 
relationship changes according to the intention of the annotation, but the body is most 
frequently somehow "about" the target. This perspective results in a basic model with three 
parts, depicted in Figure 6. The full model supports additional functionality, enabling content 
to be embedded within the annotation, selecting arbitrary segments of resources, choosing 
the appropriate representation of a resource and providing styling hints to help clients 
render the annotation appropriately. Annotations created by or intended for machines are 
also possible, ensuring that the Data Web is not ignored in favour of only considering the 
human-oriented Document Web. 

The Web Annotation Data Model does not prescribe a transport protocol for creating, 
managing and retrieving annotations. Instead it describes a resource oriented structure and 
serialisation of that structure that could be carried over many different protocols. 

                                                      

6 https://www.w3.org/TR/annotation-model/ 

7 https://www.w3.org/TR/annotation-vocab/ 

Figure 6 Core Web Annotation Data Model pattern  
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5.4  Localisation 

The localisation task in EOPEN is handled by a named entity recognition system, which is 
responsible for detecting location entities found in tweets and subsequently pinpointing the 
exact tweet locations on a territory map. 

During the past twenty years, since the 6th MUC conference (1995)[14], there has been 
enormous interest and research done in NER approaches and systems development. The 
main task of NER involves the detection and classification of certain types of words found in 
a text, such as persons, locations, organisations, temporal and numerical expressions, into 
respective predefined categories. Several entity type hierarchies have been introduced since 
then and span from simple 4-category (person, location, organisation, misc) [48] to 200-
category8 [49] propositions [45], [43]. 

While most first generation NER systems followed similar methodologies based on hand-
crafted features, it was soon proven that the task could profit enormously by the “modus 
operandi” of machine learning. As such, statistical methods have been in the limelight of 
second generation NER approaches ever since with supervised algorithms/models like Naive 
Bayes, Support-Vector Machine (SVM) and especially Hidden  Markov  Models  (HMM)  and 
Conditional Random Fields (CRF) [26]. These systems also relied on certain hand-crafted 
features and were domain-dependent, requiring specific resources to be available, thus 
making it very difficult to adapt to a different domain. Moreover, the advent of deep 
learning (notably recurrent neural networks (RNN)) and a recent breakthrough in natural 
language understanding, word representations9, such as word2vec [29], GloVE [37] and 
fastText [5], caused renewed interest in NER and led to the development of state-the-art 
systems, as found in [27] and [41]. A significant advantage of these latest systems is that 
neither feature engineering nor specialised resources are needed, other than a small amount 
of supervised training data, making their usage very versatile and “domain-agnostic”. The 
latest advancements in the field take the form of models based on an encoder named 
Transformer [7] and deep contextualised word representations. In the latter, the trained 
vectors take under consideration the input sentence in its entirety and across all layers, 
instead of just the nearest word context of the top layer found in previous approaches. This 
improved results even further and newer systems are currently able to present f1-scores of 
around 92-93 in the Conll2003 dataset, as can be seen in ELMO [40] (92.2 F1), BERT [7] (92.8 
F1), FLAIR [1] (93.09 F1) systems and in [3] (93.5 F1). 

 

 

                                                      

8 https://nlp.cs.nyu.edu/ene/ 

9 The idea is to represent words by vectors that contain hidden information about the treated 
language. 
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6 EOPEN ONTOLOGY AND ANNOTATION MODEL 

6.1  EOPEN Annotation Model 

In line with the preceding requirement analysis of EOPEN application contexts, a number of 
ontological constructs have been defined in order to support data modelling, integration and 
reasoning over the distilled information. These include: 

• Constructs for capturing metadata of twitter. 

• A structured model and format to enable annotations and assertions to be defined, 
shared and reused across both inside the EOPEN application context but also in 
different hardware and software platforms.  

A key design choice underpinning the engineering of the EOPEN models has been the 
adherence to a pattern-based approach, so as to capitalise on a modular, extensible and 
interoperable framework for expressing annotations and achieve a better degree of 
knowledge sharing, reuse and interoperability. In particular, the EOPEN annotation pattern 
reuses the Web Annotation Data Model whose a brief summary is presented in Section 5.3.1  
. It also reuses a number of existing schemata, such as DCMI and schema.org to inherit 
general purpose hierarchies and descriptive attributes. 

It must be noted that as the modelling and reasoning requirements evolve, while also user 
requirements and component output become richer, iterative cycles of assessment and 
respective revisions will take place. These will mainly affect the domain models that we use 
to capture the various information types generated within EOPEN. The pattern-based 
approach ensures that the conceptual model for associating resources with annotations will 
not be affected by the updated domain models. This is especially important since it allows 
incremental and targeted updates to be performed on the underlying vocabularies 
(according to the updated requirements), minimising the risk for compatibility errors and the 
impact that these changes may have on the platform.    

In this section, we present the way the Web Annotation Data Model is used to address the 
EOPEN modelling requirements, associating the tweet label information that is generated by 
the EOPEN modules with metadata, we call collections (Figure 7). It should be mentioned 
that the annotation model and underlying ontologies are checked against the requirements 
in order to ensure that they adequately cover the knowledge that they are expected to 
capture. As a consequence, formalisation and revision activities have been carried on 
iteratively, and will continue for the 
remaining duration of the project, as 
the use cases and requirements 
evolve. As already mentioned, the 
separation of the domain ontologies 
from the pattern used for attaching 
metadata to various resources in the 
form of views fosters reusability, 
extensibility and interoperability, 
minimising the effort to incorporate 
updates needed because of updated  

Figure 7 Core annotation model in EOPEN 

oa:Annotation

ta:ClusterBody ta:Collection

oa:hasBody oa:hasTarget 
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user and technical requirements.  

In this first version of the modelling framework (towards 1st prototype), the focus of the 
semantic analysis framework has been mainly given on capturing non-EO information and 
particularly tweet-related information and the labels that are extracted by the social media 
analysis modules, in line with the overall focus of the EOPEN platform. Consequently, the 
emphasis has been mainly placed on PUC 2. However, as described above, the standard-
based annotation model we have defined can be easily extended and adapted in order to 
support the annotation of additional resources, without the need to change the core 
conceptual framework. Finally, as described in Section 6.3, the stRDF/stSPARQL and the 
GeoSPARQL standards have been used for EO data, which ensures the seamless support of 
additional EO types in subsequent versions of the framework (2nd prototype and final 
system). 

6.1.1   EOPEN Annotation Classes 

EOPEN uses the oa:Annotation class as a basic class in the ontology. The class is used in 
both oa:Annotation and ta:Cluster_Annotation instances as a root. The initiation of an 
annotation relevant to cluster annotation is performed by defining instances of the 
oa:Annotation class.  

 

Figure 8 The base of EOPEN ontology 
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As depicted in Figure 8, this class restricts the oa:hasBody property to take as values only 
instances of the ta:ClusterBody class. In addition, the oa:hasBody property is restricted to 
take as values only instances of the ta:Label type, since annotations are derived only from 
labels. Each ta:Label instance has as property the name of the labels that are found in the 
tweet text and the accuracy of each label. The ta:ClusterBody is an as:Object type (Figure 
9). 

 

 

 

 

 

 

The oa:Annotation class restricts the oa:hasTarget property to take as values only 
instances of the ta:Collection class (Figure 8). In addition, the oa:hasTarget property is 
restricted to take as values only instances of the ta:Annotation type. The annotations are 
restricted with the oa:hasBody property which take only instances of the rdfs:Resource 
class and with the oa:hasTarget property which take only instances of the ta:Tweet class. 
More specifically, each annotation instance is linked with a ta:Resource instance which 
contains a ta:topRanked property to describe if the specific tweet is characterised as top 
ranked. Annotation instances are also linked with a ta:Tweet instance which is a subclass of 
as:Note class (Figure 10). 

 

 

 

 

 

Figure 10 Class that is subclass of as:Note 

6.2  Representing Location 

The ta:ClusterBody instance is responsible for representing the geospatial information and 
information associated with the labels. For the representation of the geospatial information 
we have used the World Geodetic System (WGS) standard. The WGS vocabulary provides 
basic RDF properties for mapping geospatial data10 like latitude and longitude. The latest 
version of this standard is WGS 84 (also known as WGS 1984, EPSG:4326), which was 
established in 1984. An example is shown below. 

                                                      

10 https://www.w3.org/2003/01/geo/ 

as:Note 

ta:Tweet 

rdfs:subClass
Of 

as:Object 

ta:ClusterBody ta:Label 

rdfs:subClassOf 

Figure 9 Classes that are subclasses of as:Object 

https://www.w3.org/2003/01/geo/
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Table 5 Example of World Geodetic System mapping. 

 

In our case, the ta:ClusterBody class is associated with the WGS properties and the 
ta:Label class. Each ClusterBody refers to a coordinate system and includes a set of labels. 
The information that refers to the geolocation are the latitude (wgs84_pos:lat) and the 
longitude (wgs84_pos:long).  Each label has an as:name property, which refers to the text of 
the label, and an  as:accuracy property, which is the accuracy for the specific label. The 
ta:ClusterBody instance is associated with the following properties (Figure 11). 

 

 

 

 

 

 

 

 

 

6.3  Linking open EO and non-EO data 

Earth Observation data in the form of satellite imagery have by their nature a spatial and a 
temporal dimension. Each EO product (scene) comes with an exhaustive set of structured 
metadata which provide the full context in which the scene has been generated. This 
includes information about the mission (e.g. Sentinel-1), the platform (Sentinel-1A or 1B), 
the sensor and the operating mode, the sensing start and end time, the orbit number, the 
position of the sun, etc. The information model is layered from the most generic to the most 
specific information. Specific information is provided for example for radar products (e.g. 
polarisation channels), while other information is provided for optical imagery (e.g. cloud 
coverage). 

Similarly to tweets and events data, EO products metadata may thus be encoded as linked 
data and use the geo-temporal extensions of stRDF/stSPARQL or the GeoSPARQL to encode 
the space and time values. 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

        xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"> 

  <geo:Point> 

    <geo:lat>55.701</geo:lat> 

    <geo:long>12.552</geo:long> 

  </geo:Point> 

</rdf:RDF> 

 

ta:ClusterBody 

ta:labels wgs84_pos:lat wgs84_pos:long 

as:accuracy as:name 

Figure 11 Properties that are associated with ta:ClusterBody. 
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An OGC Discussion Paper OGC 16-074 EO Metadata Discovery using Linked Data, published 
in March 201611, proposes interfaces to discover Earth Observation dataset series (families 
of products) and dataset (product) metadata using the Linked Data paradigm.  It also 
describes the recommended encoding in RDF of Earth Observation resources. 

Figure 12, below, extracted from the Discussion Paper, shows the main metadata attributes 
linked to an EO product, that is: its footprint (oml:featureOfInterest), and the sensing start 
and end time (ical:dtstart / ical:dtend). The document covers the full set of available 
metadata and provides example encodings, mainly in JSON-LD, but also RDF/XML and Turtle. 

 

Figure 12 Earth Observation Model 

The Discussion Paper leaves room for alternatives. For example, the EO product footprint 
could be encoded using the class oml:featureOfInterest or dct:spatial, but also sf:Polygon 
and the geo:asWKT relationship as specified in GeoSPARQL. 

Encoding the EO products metadata using the same specifications as the tweets and the 
events makes it possible to store, manage and retrieve linked entities in a seamless manner, 
using either stSPARQL or GeoSPARQL. For example, it becomes possible to search in a single 
query for all the messages tweeted and all the satellite imagery acquired in the area of a 
given event and in the same time frame.  

It also becomes possible to use an RDF browser to navigate in the tweets, events, 
EO products, and any other concepts that are encoded using the same classes. 

                                                      

11 http://wiki.services.eoportal.org/tiki-download_wiki_attachment.php?attId=4201. 
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Because of the big and constantly increasing amount of available EO products, it may be 
difficult to systematically convert all product metadata into Linked Data and ingest the result 
in a graph database. Instead, a strategy may be put in place to selectively process the 
products, for example based on an area of interest, a time of interest, or both. 
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7 SEMANTIC REASONING FRAMEWORK 

7.1  Localisation 

In this section we present a machine learning methodology for identifying location- and 
organisation-type named entities in short text (tweets) written in different languages 
(supported languages are English, Italian and Finnish). The adopted approach for the EOPEN 
NER framework revolves around deep neural networks in the form of Long Short-Term 
Memory (LSTM)-based models and is evaluated separately with respective datasets for each 
treated language. 

7.1.1   Methodology 

In this section we present the neural network’s architecture and elaborate on its most 
important features. Since the main issues that we need to address revolve around the 
candidate word’s form and placement in a given sentence, we employ combined character-
level and word-level representation techniques to handle them with efficacy. 

As already stated, the adopted approach is based on a LSTM-based model, namely a 
bidirectional LSTM with a CRF layer on top. LSTMs are ideal when dealing with sequences of 
data (like text) because of the way the network channels information via its nodes, 
leveraging its ability to keep information in memory based on history. Any sequential 
information is being kept in the LSTM’s internal state (AKA hidden layer) and is being 
updated with each new data via input/output and forget gates. This way the network is 
capable of predicting the output based on long distance dependencies. The bidirectional 
nature of the LSTM network manifests with two processes, applicable to each lexical unit of 
a given sentence that each computes a representation of the lexical unit’s left and right 
context. 

Handling word structure is not a trivial task, more so when dealing with orthographically and 
morphologically rich languages. To counter issues deriving from the abovementioned 
complexity and employ a method that takes into account the spelling of words, character-
level embeddings are used. The technique involves breaking up each lexical unit in its 
respective characters and then feeding the resulting sequence to a bidirectional LSTM which 
turns it into a spelling-respecting vector. 

In order to also respect the syntactic structure of a document and convey each lexical unit’s 
contextual characteristics word-level representations are indispensable. Again, a 
bidirectional LSTM is used to capture each lexical unit’s contextual information (both left and 
right context). Thus, the final word representations of the model combine both of the above 
embeddings. 

Furthermore, to fulfil the task of NER, assigning a NER label to each word in a sentence, the 
output needs to be annotated accordingly. It has been shown that CRFs [26] can produce 
high tagging accuracy, thereby we employ a CRF layer to attribute labels for the whole 
sentence by leveraging sentence level tag information. The tagging format used follows the 
BIO scheme (B-TAG for Beginning of entity, I-TAG for Inside of entity, O-TAG for Outside of 
entity) where each word in a sentence is assigned a label reflecting its role. A named entity 
frequently spans not just one, but many lexical units and using this format is possible to 
annotate them efficiently irrespective of their length. As such, in the sentence: Professor 
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Smith tweeted that the area around London School of Economics is flooded today # London 
the respective annotation reads O B-PER O O O O O B-ORG I-ORG I-ORG I-ORG O O O O B-
LOC. This tagging scheme has already yielded promising results, but in consequent testing, 
the format will be updated to either the BILOU or BIOES variants; they are comparable and 
usually improve scores even further since they predict dedicated tags for unique (U-TAG in 
BILOU / S-TAG in BIOES) or end entities (L-TAG in BILOU / E-TAG in BIOES). Figure 13 
highlights the bi-LSTM network’s structure, which is comprised of an input layer (word 
embeddings), a hidden layer (Bi-LSTM encoder) and an output layer (CRF layer). 

 

Figure 13 Bidirectional LSTM-CRF model for Named Entity Recognition 

In the specific implementation data that needs to be processed (input) is comprised of two 
text files; the first one contains all the tweets that become available from the IR service, 
while the second contains the BIO annotation of the aforementioned tweets, one tweet per 
line for both. The results are then outputted in a single file, in a “one sentence token-per-
line” format. In the same line, apart from the sentence token the assigned label is also 
displayed in a tab delimited format. 

The NER process using our model is followed by the concatenation of the sequential entities 
recognised as location or organisation, unless there is a comma or a full stop. Eventually, two 
lists are produced that contain all the locations and the organisations recognised within the 
sentence, respectively (Figure 14). 

In the case where location entities are recognised, the bounding box12 of each location is 
retrieved via the OpenStreetMap API. It should be noted that usually OpenStreetMap 
returns multiple responses for an entity and lists them based on their popularity. We 
consider as correct the most popular one and retrieve the coordinates of its bounding box 
and the coordinates of a specific point. In case no location entities are recognised, the 
organisation entities are considered. Otherwise, the output of the tweet localisation module 
is Null. 

Finally, an analysis of the bounding boxes returned follows. Specifically, in case of one entity, 
a single bounding box is returned. However, in case of multiple entities, the bounding boxes 

                                                      

12 https://wiki.openstreetmap.org/wiki/API_v0.6 
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are compared with each other in order to exclude bigger areas when a smaller - more 
precise one is also available and all the remaining are returned as output. 

 

Figure 14 Localisation steps after NER has been performed on available tweets 

7.1.2   Datasets 

A make or break feature concerning machine learning approaches is the availability of 
appropriate datasets that will be used to train the relevant computational models. Such 
datasets are easily attainable when over-represented languages like English are involved. 
However, the same does not apply to less represented languages like Italian or Finnish; the 
resources are scarce and finding a publicly available dataset can pose an insurmountable 
problem. Moreover, even when a suitable dataset is encountered, it is often in 
unconventional format or/and optimised for traditional classifier methods and as such, not 
adequate for training neural network-based models, which currently hold the state-of-the-
art crown. There are also cases where training data do exist but are limited in size. Thus, a 
lot of effort must be put into converting them to secure compatibility with contemporary 
models or into fusing them with other also limited datasets. To address the specific issue, 
many researchers are forced to create datasets from scratch, a process which is both 
expensive and time-consuming. In the context of EOPEN both publicly available dataset and 
custom annotated corpora are exploited to manage multilingual location and organisation 
extraction entities. 

In the context of the English localisation task, the model has been trained and evaluated on 
the CoNNL2003 dataset [48] which includes annotation of 4 categories of named entities: i) 
Person (PER), ii) Location (LOC), iii) Organisation (ORG), and iv) Miscellaneous (MISC). Out of 
these annotations, we have direct interest only for the “Location” one, but also opted for the 
“Organisation” entities in an attempt to infer possible locations out of organisations’ locales. 
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The task will be handled by a separate procedure that will consider an organisation’s name 
being present in a tweet along with respective context analysis which will include heuristics 
concerning phrases like “adjacent/next to”, “2 kms”, “50 metres”, etc. 

The dataset is balanced in the three important categories (PER, ORG, LOC) and contains 
similar number of named entity occurrences, as is evident from Table 6.  

Table 6 Number of named entities and sentences in each of the CoNLL2003 data files 

CoNLL2003 (EN) PER LOC ORG MISC Sentences 

Training set 6600 7140 6321 3438 14987 

Development set 1842 1837 1341 922 3466 

Test set 1617 1668 1661 702 3684 

Concerning the Italian task, the dataset originates from the NER task at EVALITA 2009 [51]. 
The tagging method that was followed is based on the IOB2 format while the entity types 
differ in respect to the CoNLL2003 dataset in that the MISC category is replaced by the GPE 
(Geo-Political Entity) one. 

Table 7 Number of named entities and sentences in each of the EVALITA2009 data files. 

EVALITA2009 (IT) PER LOC ORG GPE Sentences 

Training set 4577 362 3658 2813 11227 

Test set 2378 156 1289 1143 4136 

When dealing with NER in Finnish, the issue of limited language resources quickly becomes 
apparent. To the best of our knowledge there is only one freely available dataset13 which 
was extracted from the archives of Digitoday, a Finnish online technology news source. It 
consists of 953 articles in BIO format, annotated with six named entity classes (organisation, 
location, person, product (PRO), event (EVENT), and date (DATE)). Since the dataset in its 
current state is too small to be used with a DNN, no remarkable results are expected until 
the issue of data size is addressed. On that account, we are working towards enhancing it, by 
adding more sentences of our own manual annotation efforts. 

Table 8 Number of named entities and sentences in each of the DIGITODAY data files 

DIGITODAY (FI) PER LOC ORG PRO EVENT DATE Sentences 

Training set 84 58 519 135 1 78 591 

Test set 185 268 544 173 2 51 986 

7.1.3   Network parameters and training 

The parameters that were used during training of the Bi-LSTM-CRF models are displayed on 
Table 9. The word representations used as input in the current model are the publicly 
available, pre-trained 300-dimensional GloVE embeddings [37] trained on the common crawl 

                                                      

13 https://github.com/mpsilfve/finer-data 
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corpus for the English language, while for Italian and Finnish, the respective pre-trained 300-
dimensional fastText [13] embeddings were used. At the time of writing, the same settings 
were applied to all three languages. However, in the coming months they will be fine-tuned 
to perform optimally, taking advantage of all differentiating features of the specific 
resources. 

Table 9 Bi-LSTM-CRF settings used for the task’s languages 

Training parameters Value 

Optimiser Adam 

Character embeddings dimensions 100 

Word embeddings dimensions 300 

Dropout rate 0.5 

Epochs 25 

Batch size 20 

LSTM size 100 

7.1.4   Results 

For the evaluation of the performance of all configurations the values for the precision, 
recall and F1-score measures were computed (Table 10). It should be noted at this point that 
all reported results concern the entirety of named entities found in the respective datasets, 
while our actual area of interest is limited only to the location entities found in tweets. 
Dedicated location scores, comparison with other systems where available, and appropriate 
fine-tuning information will be reported on D5.2.  

Table 10 Performance evaluation of the proposed system (EN) vs. the baseline system and a 
state-of-the-art approach 

System (CoNLL2003) Precision Recall F1-score 

Our system 90.95 90.94 90.97 

Best-scoring shared task 
system: Florian et al., 2003 

88.99 88.54 88.76 

Baevski, A. et al. 2019 (not reported) (not reported) 93.5 

 

At this point the results concerning the English language are very similar to the state-of-the-
art, yielding an F1-score of ~91. To further improve on this score, on future iterations we 
plan to update the model with newer embeddings (e.g. ELMO) and annotation (to the 
BILOU/BIOES format). Next, we introduce ten example tweets extracted directly from the 
EOPEN platform after they have been processed by the localisation tool. The sentences are 
presented with integrated location annotation to better convey the application process. In 
orange the entities that were extracted correctly, while in red the entities that were not 
extracted at all or were extracted with the wrong annotation (e.g. PER instead of LOC) and 
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thus, discarded. All coloured entities in each sentence should be extracted and annotated 
correctly in order to reach 100% results. 
 
Relevant passage (EN): 

1. Matteotti square is flooded. #underwater #flooding 
2. The sewers are flooded. #Vicenza #flooding 
3. #Bacchiglione #flooding #Vicenza The river has overflowed. 
4. The levees are cracked at Angeli bridge. 
5. Houston fears climate change will cause catastrophic flooding 
6. Could see heavy rain and local flooding from storms on Monday in New Jersey … 
7. How quick-thinking mother saved family from Grenfell fire by flooding her flat 
8. Flying in over the snow covered fields of Finland was quite magical! 
9. current weather in Tampere: light shower snow, -4°C, 92% humidity, wind 3kmh 
10. Not only one, many snowploughs coming to the rescue. #oslo 

The same evaluation metrics apply to the Italian use case and are presented in Table 11. 

Table 11 Performance evaluation of the proposed system (IT) vs. the baseline system and a 
state-of-the-art approach 

System (EVALITA2009) Precision Recall F1-score 

Our system 75.49 75.60 75.37 

Best-scoring shared task 

system: FBK_ZanoliPianta 

84.07 80.02 82.00 

Nguyen and Moschitti, 2012 85.99 82.73 84.33 

 
Currently the Italian model is fully operational and the first results are indicative of its 
ongoing development status. The dataset needs to be updated in terms of annotation (to 
the BILOU/BIOES format) and the training parameters and embeddings need to be fine-
tuned in order to take advantage of the neural model’s potential. The best result to date is 
reported by such a system, as can be seen in [33]. Again, as was the case with the English 
language, ten example tweets are presented to demonstrate the tool’s progress towards 
efficient location recognition in Italian. 
 
Relevant passage (IT): 

1. Ventennale dell’#alluvione di #Sarno, cosa è cambiato? 
2. Dicono che Genova è solo rossoblù e fanno il tifo per l’alluvione 
3. esiste tifoseria più ritardata del Napoli? 
4. Presentazione il sistema di #allertameteo della #ProtezioneCivile della città di 

#Gorizia 
5. Situazione di forte #allertameteo ieri in #Spagna per la #grandine. 
6. #Siracusa, allagamento nel seminterrato dell'ospedale "Rizza" 
7. Siamo al 21° anniversario dell'alluvione a Stazzema: una targa in ricordo 
8. #documentario sull'alluvione #Firenze al @AquaFilmFestiva 2017 
9. Maltempo, disastro in Veneto: dopo il super caldo, ecco l’alluvione. 



D5.1 – V1.0  

 

Page 41 

10. Ponte Milvio fa acqua: ancora un allagamento in via Prati della Farnesina... #news 
#Roma 

7.2  Semantic search enrichment 

In this section we present a methodology that we developed to extract the first hypernyms 
in three levels from WordNet. The methodology establishes a connection between BabelNet, 
Babelfy and WordNet. More specifically the methodology gets as input a JSON file which 
contains mostly text metadata about a topic which is found in tweets like labels, location 
and ids Table 12. In the JSONArray each JSONElement characterises a different topic. More 
details about the JSON input file can be found in section 8. 

We take into account each label’s text from the input (Value selection) and we extract 
Babelfy information for each text using the Babelfy Java API (Information extraction). Some 
words may appear multiple times in the response, so we apply a data cleaning technique to 

[   
   {   
      "id":"1", 
      "labels":[   
         {   
            "text":"lash", 
            "score":0.0339359955414791 
         }, 
         {   
            "text":"breaking", 
            "score":0.0257992605776155 
         }, 
         {   
            "text":"area", 
            "score":1.1073852024257E-7 
         } 
      ], 
      "location":{   
         "latitude":45.5455, 
         "longitude":11.5354 
      }, 
      "tweets":[   
         "1001376987271778310", 
         "1001379246076379136", 
         "1001379428713119745", 
         "1001379709177942016", 
         "1001412744237629446", 
         "1001411514874585088" 
      ], 
      "top_ranked_tweets":[   
         "1001376987271778310", 
         "1001379246076379136", 
         "1001379428713119745", 
         "1001379709177942016" 
      ] 
   } 
] 

 

Table 12 Input example 
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keep the words with the highest global score which is included in the Babelfy information 
that are extracted (Results cleaning). Another field that is included is the BabelNet URL, 
which we used to connect to the BabelNet Linked data interface14 (WordNet id extraction). 
The interface contains a plethora of additional information for each word. We used the 
lemon-WordNet31 value to execute SPARQL queries and extract the first hypernym for each 
word for a three-level tree of hypernyms (Table 13). A graph view of the methodology that 
we followed is shown in Figure 15. 

 

Figure 15 The methodology that we followed 

 

The results are saved in a new JSON file which contains the plain text and the tags from the 
original JSON file, the file id and a JSON array with the WordNet information: the term that 
has been analysed and the hypernym identifier for each one of the three hypernym levels 
Table 13. Some results were not found in BabelNet and they are not included in the result, 
while others may not have hypernyms so they have “null” value in the hypernym level that 
was not found. The identifier of each level can be used in WordNet to extract more 
information about the each hypernym like the description, the synonyms, the part of speech 
type, the hypernyms, the hyponyms and the holonyms. 

 

                                                      

14 http://babelnet.org/rdf/page/ 

PREFIX pwnid: <http://wordnet-rdf.princeton.edu/id/>  

PREFIX wn: <http://wordnet-rdf.princeton.edu/ontology#>  

PREFIX ontolex: <http://www.w3.org/ns/lemon/ontolex#>  

 

select distinct ?x where {   

pwnid:05135784-n  wn:hypernym ?x.   

} 

 

Table 13 Example of querying in WordNet for hypernyms extraction 

http://babelnet.org/rdf/page/
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7.3  Rules 

The semantic framework implements a reasoning and validation framework to further 
aggregate and link the metadata collected from processing components, as well as to ensure 
the semantic consistency of the generated RDF graphs. 

Additional inferences are derived by combining native OWL 2 RL reasoning and custom rule 
sets. The former is solely based on the OWL 2 RL profile semantics that are implemented in 
the form of first-order axiomatisation (OWL 2 RL/RDF rules [30]). The knowledge base is 
connected with state-of-the-art triple stores, such as GraphDB and AllegroGraph, for storing 
and querying metadata that inherently implement the semantics of OWL 2 RL.  

However, the semantics of the OWL 2 language is limited. For example, OWL 2 class 
semantics can model only domains where instances are connected in a tree-like manner 
[32]. Our framework allows us to define custom rules on top of the knowledge graphs to 
express richer semantic relations. SPARQL-based rules are used to capture domain 
relationships in the form of CONSTRUCT graph patterns that identify the valid inferences 
that can be made on the annotation pattern. Figure 16 presents the abstract reasoning 
architecture. 

[   
   {   
      "Id":"1", 
      "Wordnet":[   
         {   
            "Level 1":"01881348-v", 
            "Level 3":"01835473-v", 
            "Level 2":"01880523-v", 
            "Term":"lash" 
         }, 
         {   
            "Level 1":"null", 
            "Level 3":"null", 
            "Level 2":"null", 
            "Term":"breaking" 
         }, 
         {   
            "Level 1":"05130681-n", 
            "Level 3":"04923519-n", 
            "Level 2":"05097645-n", 
            "Term":"area" 
         } 
      ] 
   } 
] 

 

Table 14 Output example 
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Figure 16 Abstract reasoning architecture 

7.3.1   Rules 

We use SPIN rules, i.e. SPARQL construct graph patterns, to implement expressive reasoning 
rules, enabling property value propagation and instance generation (when needed). The 
core idea is to associate each reasoning task with one or more SPARQL rules that support 
specific reasoning functionality, e.g. link of tweet clusters. In the following, we present 
examples of such reasoning cases and rules. More elaborate rule-based reasoning cases will 
be tackled in future versions of the prototype framework and reported in upcoming 
deliverables. 

Tweet cluster linking. In section 7.2 we described the way tweet clusters are enriched with 
additional terms from lexical database and Linked Data resources. Based on the new context 
added to the KB, we can define rules that materialise and further interlink the resources. For 
example, tweet cluster whose extended list of topics contains many overlaps with another 
tweet cluster, can be considered relevant. In this case, we enable the navigation among of 
conceptually relevant tweet groups, detecting connections that have not been identified by 
the topic detection module.  The rule that implements this relations is given below: 

PREFIX ta: <https://eopen-project.eu/ontologies/tweet-annotations#> 
PREFIX oa: <http://www.w3.org/ns/oa#> 
CONSTRUCT { 
    ?a1 ta:relevant ?a2 . 
} 
WHERE { 
    ?a1 a ta:ClusterAnnotation; 
       oa:hasBody ?b1. 
    ?b1 ta:labels ?l1. 
    ?a2 a ta:ClusterAnnotation; 
       oa:hasBody ?b2. 
    ?b2 ta:labels ?l2. 
    FILTER (?a1 != ?a2) . 
    FILTER(:relevant (?l1, ?l2)) 
} 
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The rule matches a tweet annotation (a1) whose cluster contains at least one relevant topic 
to some other cluster (a2). In this case, a new triple is generated that materialise the fact 
that these two cluster are relevant (?a1 ta:relevant ?a2). In future version of the 
framework, we will implement a more advanced method that will take into account the 
number of the relevant terms in order to associate different weights.  

7.3.2   Validation 

The validation process aims to check the consistency, structural and syntactic quality of the 
generated metadata descriptions before the annotations graphs are persisted in the 
repository. The validity of the annotations is checked using both native ontology consistency 
checking (e.g. OWL 2 DL reasoning) and custom SHACL [22] validation rules, following the 
closed-world paradigm. The former handles validation taking into account the semantics at 
the terminological level (TBox), e.g. checking class disjointness. The latter is necessary in 
order to detect constraint violations in RDF data, e.g. missing values, cardinality violations, 
etc. An example SHACL shape is given below that represents a constraint that all Cluster 
Annotations should include at least one collection of tweets. 

ta:ClusterAnnotation 
   rdf:type sh:NodeShape ; 
   sh:property [ 
      rdf:type sh:PropertyShape ; 
      sh:path oa:hasTarget ; 
      sh:class as:Collection ; 
      sh:minCount 1 ; 
      sh:nodeKind sh:IRI ; 
   ] ; 
. 
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8 ONTOLOGY VALIDATION 

In this section we describe the EOPEN annotation model to map the results of Task 4.2 using 
a simulation example. The technical partners provided feedback about the generated results 
(both in terms of the format and content), helping us generate the respective annotation 
vocabularies. The JSON below was given as input and the Turtle RDF file was produced as an 
output. 

The input describes the results of topic extraction. The results contain a top ranked tweet 
which has one label. The tweet refers to a geolocation. The output contains properties 
relevant with the resource and labels found in the tweet. 

[   
   {   
      "id":"1", 
      "labels":[   
         {   
            "text":"rain", 
            "score":0.320496732575757 
         } 
        ], 

"location":{   
         "latitude":45.5455, 
         "longitude":11.5354 
      }, 
      "tweets":[ 
        "1001376594013765632" 
      ], 
      "top_ranked_tweets":[   
         "1001376594013765632" 
      ] 
   } 
] 

Table 15 Example of input data in JSON 
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Figure 17 Example mapping of topic extraction results for the simulation example 

The generated knowledge graphs contain all the necessary relations to adequately map the 
output of topic extraction. Following the annotation model described in Section 6.1 , an 
ta:ClusterAnnotation resource is generated that is linked with the target of the 
annotation, i.e. the generated collection (Collection_1) and the cluster body 
(ta:ClusterBody_1). The latter, defines property assertions relevant to the labels extracted 
from the tweet, the geolocation and the resource of the tweet, while the first defines the 
tweet general information like URL and topRanked property. The RDF graph in the Turtle 
syntax15 is given below. 
                                                      

15 https://www.w3.org/TR/turtle/  

https://www.w3.org/TR/turtle/
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@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
@prefix oa: <http://www.w3.org/ns/oa#> . 
@prefix as: <http://www.w3.org/ns/activitystreams#> . 
@prefix ta: <https://eopen-project.eu/ontologies/tweet-annotations#> .  
@prefix wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos#> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#> 
  a owl:Ontology ; 
  owl:imports <http://www.w3.org/ns/oa>, <https://www.w3.org/ns/activitystreams-
owl> ; 
  owl:versionInfo "Created with TopBraid Composer" . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody> 
  a owl:Class ; 
  rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Object> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#Label> 
  a owl:Class ; 
  rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Object> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#Tweet> 
  a owl:Class ; 
  rdfs:subClassOf <http://www.w3.org/ns/activitystreams#Note> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#labels> 
  a owl:ObjectProperty ; 
  rdfs:domain <https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody> 
; 
  rdfs:range <https://eopen-project.eu/ontologies/tweet-annotations#Label> ; 
  rdfs:subPropertyOf <http://www.w3.org/ns/activitystreams#tags> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#topRanked> 
  a owl:DatatypeProperty ; 
  rdfs:range xsd:boolean . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#Cluster_Annotation_1> 
  a <http://www.w3.org/ns/oa#Annotation> ; 
  oa:hasBody <https://eopen-project.eu/ontologies/tweet-annotations#ClusterBody_1> 
; 
  oa:hasTarget <https://eopen-project.eu/ontologies/tweet-
annotations#Collection_1> . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#Label_1> 
  a <https://eopen-project.eu/ontologies/tweet-annotations#Label> ; 
  as:accuracy "0.32049674"^^xsd:float ; 
  as:name "rain" . 
 
<https://eopen-project.eu/ontologies/tweet-annotations#Annotation_1> 
  a oa:Annotation ; 
  oa:hasBody <https://eopen-project.eu/ontologies/tweet-annotations#Resource_1> ; 
  oa:hasTarget <https://twitter.com/1001376594013765632> . 

Table 16 Example of output data in RDF 
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<https://twitter.com/1001376594013765632> a <https://eopen-
project.eu/ontologies/tweet-annotations#Tweet> . 
<https://eopen-project.eu/ontologies/tweet-annotations#Resource_1> 
  a rdfs:Resource ; 
  ta:topRanked true . 
 
ta:Collection_1 
  a as:Collection ; 
  as:items ta:Annotation_1 . 
 
ta:ClusterBody_1 
  a ta:ClusterBody ; 
  wgs84_pos:lat "45.5455"^^xsd:float ; 
  wgs84_pos:long "11.5354"^^xsd:float ; 
  ta:labels ta:Label_1 . 
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9 CONCLUSIONS 

In this document we provided the requirement specifications and the state-of-the-art 
analysis relevant to the building of the semantic knowledge structures addressed within T5.1 
“The EOPEN ontology”. We also described the current status of the EOPEN ontologies 
towards MS3 that encode in a structured way the vocabulary and the precise semantics of 
information relevant to the EOPEN application context. We have also presented the 
preliminary version of WP5’s reasoning framework towards MS3 (T5.2 “Reasoning for 
decision support”) for combining, integrating and semantically interpreting and enriching the 
knowledge captured in the KB. The current annotation model of EOPEN has been validated 
through a simulation example organised within WP5 in order to elicit modelling 
requirements and acquire a better understanding of the structure and content of the 
outputs provided by each component of the EOPEN pipeline. Finally, as far as T5.2 is 
concerned (“Linked open EO data”), we presented the roadmap towards interlinking EO and 
non-EO data. 

Next steps include further enrichments and enhancements of WP5 ontology-based 
framework in three main directions. First, to refine the already developed annotation 
models and to provide and validate additional ontology constructs for capturing richer 
domain knowledge pertinent population of the KB with data, based on the richer output the 
various modules will provide towards the first prototype (M18). This involves also the 
development and integration of domain models pertinent to the use cases of the EOPEN 
project. The annotation model will be also enriched with additional metadata properties, 
when it is a clear view on the exact output of the analysis. Second, to enhance the reasoning 
capabilities that will address more elaborate interpretation aspects by (i) enriching the 
supported semantics both at the terminological level, by defining additional class and 
property axioms, and at the assertional level by incorporating inference rules, (ii) handling 
imperfect information (i.e. missing or uncertain inputs). Special emphasis will be also place 
on aggregating the results of EO and non-EO data. Finally, in parallel with T5.2, searching 
APIs will be implemented in order to provide an intelligent query interface for addressing 
users’ searching requirements, e.g. searching tweets based on semantics. 
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A Appendix 

A.1. Software and tools 

The current version of the JSON to RDF converter is available in the repository 
https://gitlab.com/rousi.maria1/eopen-jsontordfconverter. The converter gets as an input a 
JSON file, converts it into RDF, saves the RDF format in the semantic database GraphDB and 
returns as a result the RDF format of the input. The converter is a post web service, while a 
dockerfile is available in order to be integrated with docker. Also, in the repository 
https://gitlab.com/rousi.maria1/eopen-jsontordfclient a java client is available which sends a 
JSON to the converter and gets as a result the RDF format of the input. 

https://gitlab.com/rousi.maria1/eopen-jsontordfconverter
https://gitlab.com/rousi.maria1/eopen-jsontordfclient

