

 Page 1

EOPEN
opEn interOperable Platform for unified access and analysis of Earth

observatioN data

H2020-776019

D4.2 Report on data clustering of EO and
non-EO data

Dissemination level: Public

Date of delivery: Month 25, 03.06.2020 (resubmission)

Workpackage: WP4 Knowledge discovery and content extraction

Task: T4.4 Data clustering and exchange among federated
databases

Type: Demonstrator

Approval Status: Approved

Version: 2.0

Number of pages: 52

Filename: d4.2-clustering_of_eo_and_non_eo_data_2020-06-
03_v2.0.docx

https://mklab.iti.gr/eopen/doku.php?id=work_packages:wp_4_knowledge_discovery_and_content_extraction

 Page 2

Abstract

This deliverable reports on the current status and latest advances made with respect to work
package WP4, specifically, T4.4 about the data clustering and exchange among federated databases
within EOPEN. This task is closely linked to Task 4.1, Task 4.5, as well as tasks in work package WP6
(System development and integration) and work package WP3 (EO and non-EO data acquisition). The
development and implementation of clustering algorithms described in this deliverable enable the
co-clustering of both EO and non-EO data. The key contributions of this deliverable are: (a) a
methodology to estimate the number of clusters; (b) a description of Twitter information clustering,
both textual and imagery; (c) a description of pixel clustering for image segmentation; (d) a novel
methodology for clustering satellite image patches in an unsupervised way; (e) the status of the
implementation on HPDA and HPC platform; and (f) the status of the integration on the EOPEN
platform.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

This project has received funding from the European Union's Horizon 2020 research and
innovation program under grant agreement 776019

https://mklab.iti.gr/eopen/doku.php?id=work_packages:wp_6_system_development_and_integration

 D4.2 – V2.0

Page 3

History

Version Date Reason Revised by Approved By

0.1 22.11.2019 Initial draft and
document structure

Li Zhong, Stelios
Andreadis

Dennis Hoppe

0.2 25.11.2019 Integration of NOA’s
contribution

Li Zhong,
Vasileios
Sitokonstantinou

Dennis Hoppe

0.3 29.11.2019 Revise context based on
review comments

Li Zhong,
Vasileios
Sitokonstantinou,
Stefanos
Vrochidis

Dennis Hoppe

0.4 29.11.2019 Revise context based on
review comments

Stelios Andreadis,

Gilles Lavaux
(Serco)

Li Zhong

1.0 (Final
Version)

29.11.2019 Final check of the
document

Li Zhong M. Gabriella
Scarpino

2.0 (revised
version)

31.05.2020 Revised document with
final comments

Stelios Andreadis,
Ilias
Gialampoukidis,

Li Zhong

Dennis Hoppe,
M. Gabriella
Scarpino

Author list

Organization Name Contact Information

USTUTT Li Zhong li.zhong@hlrs.de

USTUTT Dennis Hoppe dennis.hoppe@hlrs.de

CERTH Stelios Andreadis andreadisst@iti.gr

CERTH Ilias Gialampoukidis heliasgj@iti.gr

NOA Vasileios Sitokonstantinou vsito@noa.gr

CERTH Stefanos Vrochidis stefanos@iti.gr

 D4.2 – V2.0

Page 4

Executive Summary

In this deliverable, we report on our key contributions towards the clustering of EO and non-
EO data (both textual and imagery) as well as the integration on HPC/HPDA and EOPEN
platform. In order to achieve this ambitious goal, an overview of state-of-the-art algorithms
on clustering is described, a methodology to estimate the number of clusters is introduced,
and the implementation of a clustering service is presented.

Key contributions and achievements with respect to Task T4.4 are:

• An overview of state-of-the-art-clustering algorithms and a novel approach to
estimate the number of clusters, presented in Section 2.

• Existing or new algorithms, developed in the frame of EOPEN, to deal with the
problem of clustering EO and non-EO data. More information will be given in Section
3 (clustering of non-EO data) and Section 4 (clustering of EO data).

• Algorithms transferred on Hadoop and executed on HLRS’s Big Data infrastructure,
aiming at linear computational and memory complexity. Results and an evaluation of
process time and cost will be shown in Section 5.1 .

• Integration of a clustering service into the EOPEN platform, visualisation of the
results in the EOPEN Dashboard, and an outline of the upcoming workflow, all
depicted in Section 5.2 .

It should be noted here that this document is a resubmitted version of D4.2 and includes all

the progress achieved for the Task T4.4 since the initial submission of the deliverable.

Specifically, newly added Sections 4.2 and 5.1.4 refer to a new approach to cluster EO

imagery patches in an unsupervised way and its parallel implementation on HPC. Any

remaining work on the task will be reported in the final deliverable of WP4, D4.4.

Taking into strong consideration the reviewer’s suggestion to get informed about the work

of other projects on similar tasks and seek synergies, we have initiated communications with

the projects CANDELA and BETTER. Regarding CANDELA, we worked together to prepare

comparative tables, which show the similarities and differences of each project’s approach

and can serve as a first step towards discovering potential collaborations. However, these

tables are not included in this deliverable, because they refer to tasks other than T4.4. In

detail, a table about information retrieval (DLR) will be added to D4.3, a table about

semantic technologies (IRIT) to D5.2, and a table about change detection (TAS FR) to

resubmitted D4.1. Regarding BETTER, we have already started two collaborative exercises

with Fraunhofer and DEIMOS that involve EOPEN’s work on social media collection and

analysis. Again, these exercises are not reported in D4.2, but will be in the relevant D3.3.

 D4.2 – V2.0

Page 5

Abbreviations and Acronyms

ANN Artificial Neural Network

API Application Programming Interface

CBIR Content-Based Image Retrieval

CERTH The Centre for Research & Technology, Hellas

DL Deep Learning

DNN Deep Neural Network

EO Earth Observation

HDFS Hadoop Distributed File System

HLRS High-Performance Computing Center Stuttgart

HPC High-Performance Computing

HPDA High-Performance Data Analysis

KLD Kullback–Leibler Divergence

LDA Latent Dirichlet Allocation

MSE Mean Square Error

ML Machine Learning

NOA National Observatory of Athens

PCA Principal Component Analysis

RF Random Forest

SoA State of the Art

t-SNE t-distributed Stochastic Neighbour Embedding

USTUTT University of Stuttgart

https://www.certh.gr/root.en.aspx

 D4.2 – V2.0

Page 6

Table of Contents

1 INTRODUCTION ... 8

2 ESTIMATING THE NUMBER OF CLUSTERS ... 9

2.1 Related Work .. 9

2.2 Background and Notation in Density-based Clustering on the Feature Space 10

2.3 Time Operator and Age of the DBSCAN-Martingale processes 11

3 CLUSTERING OF NON-EO DATA .. 15

3.1 Twitter Textual Data Clustering .. 15

3.2 Twitter Imagery Data Clustering... 15

4 CLUSTERING OF EO DATA .. 19

4.1 Image Segmentation .. 19
4.1.1 Related work in Image Segmentation .. 19
4.1.2 Cluster of Pixels .. 20
4.1.3 Evaluation .. 22
4.1.4 Future Work ... 23

4.2 Clustering satellite image patches .. 23
4.2.1 Related work .. 24
4.2.2 Methodology for an automated workflow on HPC ... 26
4.2.3 Evaluation .. 27
4.2.4 Concluding remarks and future work .. 30

5 INTEGRATION .. 31

5.1 Implementation on HPC infrastructure ... 31
5.1.1 Hardware Infrastructure .. 31
5.1.2 Software Stack ... 32
5.1.3 Execution of text clustering on HPDA .. 33
5.1.4 Execution of EO clustering on HPDA .. 38

5.2 Integration with EOPEN Platform ... 40
5.2.1 Text Clustering Service ... 40
5.2.2 Visualisation of topics in the EOPEN Dashboard ... 41
5.2.3 An alternative workflow for the text clustering... 45

6 CONCLUSIONS ... 46

 D4.2 – V2.0

Page 7

7 REFERENCES .. 47

 D4.2 – V2.0

Page 8

1 INTRODUCTION

Work package WP4 addresses the challenge of extracting information from EO and non-EO
data collected in WP3. Specifically, the core objective is to detect changes, concepts, events
and communities in large streams of data. In order to achieve this challenging goal, the work
package is split into multiple tasks covering change detection (Task 4.1), concept and event
detection in non-EO data (Task 4.2), similarity fusion (Task 4.3) and community detection
(Task 4.5).

This document specifically describes the status and progress made with respect to Task T4.4,
whose objective is to develop and apply clustering algorithms on EO and non-EO data in
EOPEN. Specifically, the core work is to enable accurate and intuitive services that could be
accessed by end users. In order to achieve this ambitious target, a lot of work has been
done. First, the problem of estimating the number of clusters (Romesburg C., 2004) is
defined and a novel approach that is independent of the type of input to be clustered,
namely the DBSCAN-Martingale, is presented. Next, focusing on non-EO data, two clustering
procedures are described; one performed on textual information and one on imagery, both
originating from Twitter posts. For the textual data, a dedicated service uses the
aforementioned approach to estimate the number of clusters, then assigns the available
posts to the clusters and finds the most frequent terms for each group. Aside from this, an
unsupervised image clustering is performed on the images crawled from Twitter. Different
techniques including deep neural networks (DNNs) such as AutoEncoder are utilized.
Regarding the EO data, due to the data imbalance and insufficiency, an algorithm based on
clustering was implemented to automatically identify the rice pads from EO images in an
unsupervised manner, so that the great labour coming from manually labelling the data is
eliminated. Furthermore, the implementation of algorithms is transferred to HPC and HPDA
infrastructure utilizing Apache Spark, TensorFlow, Keras and so on to achieve high efficiency.
Finally, the text clustering service is integrated in EOPEN platform, its results are visualised in
the EOPEN Dashboard and its transferability to HPC is evaluated.

The remainder of this deliverable is organized as follows. Firstly, in Section 2, we describe
the problem of estimating the number of clusters and present the novel method of DBSCAN-
Martingale. Section 3 provides insight on the algorithms and methods adopted to cluster
non-EO data, especially on Twitter textual and imagery data, while also presenting the
corresponding results. For the clustering of EO data, methods that are used to cluster pixels
of satellite images are described in Section 4 along with an analysis of their drawbacks and
further improvement. Section 5 continues with the implementation of clustering strategies
on HPDA and HPC infrastructure provided by HLRS. Besides, the status of integration and
visualisation of clustering on EOPEN platform is also given. The deliverable concludes with
Section 6, which summarizes the progress made and gives a brief outlook towards further
15.

 D4.2 – V2.0

Page 9

2 ESTIMATING THE NUMBER OF CLUSTERS

The EOPEN datasets involve Big Data collections of EO and non-EO data that need to be
grouped in order to be effectively managed. All these data sources are initially collected as
raw data and the problem is to cluster them per a target modality, such as visual, textual,
spatiotemporal or combinations of multiple modalities.

Clustering often requires as input the desired number of clusters and this is a challenging
pattern recognition problem in several real-life applications, such as in bioinformatics (Getz,
et al. 2000), in computer vision (Liu, et al. 2017) (Moumtzidou, et al. 2017), in sociology and
biology (Girvan, et al. 2002) and in computer science applications (Newman, et al. 2004).

Assuming that each modality can be represented in a feature space of one multi-dimensional
vector per item (a tweet or satellite image or text or Twitter image), we present the EOPEN
approach in estimating the number of clusters in a dataset of 𝑛-instances (vectors).

2.1 Related Work

Over the last two decades clustering using density-based approaches has been a notable
open pattern recognition problem. (Ester, et al. 1996) has introduced DBSCAN which has
then been enhanced into a modern hierarchical version, namely HDBSCAN by (Campello, et
al. 2013), which produces cluster hierarchies. Later, (Dockhorn, et al. 2016) introduced a
non-hierarchical cut of the DBSCAN hierarchy in a deterministic but variable density-based
clustering. Meanwhile, (Gialampoukidis, et al. 2016) proposed a probabilistic density-based
clustering having variable density levels that are randomly generated from the uniform
distribution. (Gialampoukidis, et al. 2017) proposed the generation of skewed samples of
density levels, aiming to reduce the time needed to extract all clusters. Contrary to
(Gialampoukidis, et al. 2017), the methodology presented here analytically obtains the
expected number of extracted clusters per DBSCAN-realization and the minimum required
number of iterations for the extraction of all clusters.

F-OPTICS, presented by (Schneider and Vlachos 2013), has reduced the computational cost
of the OPTICS algorithm, originally introduced in (Ankerst, et al. 1999), using a probabilistic
definition of the reachability distance, without significant accuracy reduction. The OPTICS-𝜉
algorithm (Ankerst, et al. 1999) requires an extra parameter 𝜉, which has to be manually set
in order to find “dents” in the OPTICS reachability plot. (Gan and Tao 2015) introduced an
approximate version of DBSCAN, which could be combined with the DBSCAN-Martingale
approach that is proposed in this section by replacing DBSCAN with its corresponding
approximate clustering algorithm. NQ-DBSCAN is a recent algorithm for density-based
clustering, (Chen, et al. 2018), which aims to reduce the number of unnecessary distance
computations in order to provide a faster version of DBSCAN, without significant deviation
from the exact output of the original DBSCAN algorithm. In NQ-DBSCAN the selection of the
parameters (∈and𝑚𝑖𝑛𝑃𝑡𝑠) is considered optimal and a priori given. (Schubert, et al. 2017)
considered the estimation of the density level ∈ more challenging than the intuitive task to
determine 𝑚𝑖𝑛𝑃𝑡𝑠.

Recent sequential density-based clustering approaches involve several iterations to obtain
the final cluster structure (Louhichi, et al. 2014) (Mai, et al. 2017). In contrast to these
approaches, the following analysis is based on recent advances in statistical mechanics

 D4.2 – V2.0

Page 10

(Gialampoukidis, et al. 2013) (Antoniou, et al. 2015) and martingale theory, and optimizes
two martingale stochastic processes in density-based clustering, originally introduced in
(Gialampoukidis, et al. 2016).

2.2 Background and Notation in Density-based Clustering on the Feature
Space

Given a dataset of 𝑛-instances, density-based clustering algorithms, such as DBSCAN (Ester,
et al. 1996), provide as output a clustering vector 𝐶 with values the cluster IDs 𝐶[𝑗] for each
instance 𝑗 = 1,2, … , 𝑛, assigning each element 𝑗 to a cluster. The cluster may refer to a topic
of text documents (tweets in our case) or groups of images (social media images or satellite
ones), or even communities of user accounts that usually mention each other on Twitter.

In case the 𝑗-th element is marked as noise, then the cluster ID is zero: 𝐶[𝑗] = 0, where we
denote by 𝐶[𝑗] the 𝑗-th element of a vector 𝐶. This is also written as 𝐶 = 0, where 0 is a
vector of zeros. The algorithm DBSCAN has two parameters: a density level 𝜖 and a lower
bound for the number of clusters in a dataset 𝑚𝑖𝑛𝑃𝑡𝑠. The parameter 𝑚𝑖𝑛𝑃𝑡𝑠 is usually
predefined based on the minimum size of the desired clusters.

The density level 𝜖 is hard to be estimated and, if so, then the algorithm is not able to output
all clusters using one unique density level. The cluster structure is visualised using the
OPTICS (Ankerst, et al. 1999) diagram of reachability distances, where the dents represent
clusters and it is also possible to observe the density level at which the desired clusters are
extracted. An example of some randomly generated clusters on the plane along with the
corresponding OPTICS plot of reachability distances is presented in Figure 1 below.

(a) 5 random clusters of various densities (b) Reachability distance plot generated by
OPTICS

Figure 1: Illustrative example of the problem statement in density-based clustering.

The reachability distance determines the density level 𝜖, while the parameter 𝑚𝑖𝑛𝑃𝑡𝑠 is a
pre-defined fixed value, approximately equal to 10, as initially proposed by (Ankerst, et al.
1999). For each density level 𝜖, the output of DBSCAN is one clustering vector and is denoted
by 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖).

-2 -1 0 1 2

-1
0

1
2

3

0 100 200 300 400 500

0
.2

0
.4

0
.6

0
.8

OPTICS order

R
e

a
c
h

a
b

ili
ty

 d
is

ta
n

c
e

 D4.2 – V2.0

Page 11

Small values of 𝜖 result to 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖) = 0, because all points are marked as noise. However,

large values of 𝜖, result to 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖) = 1, where 1 is a vector of ones, since all points are

reachable from any other point, hence, all points are assigned to the same cluster.

Lemma 1. (Gialampoukidis, et al. 2016) Two clustering vectors 𝐶𝑖, 𝐶𝑙 are mutually
orthogonal, if and only if they contain different clusters.

The proof of Lemma 1 is given in (Gialampoukidis, et al. 2016).

The DBSCAN-Martingale algorithm (Gialampoukidis, et al. 2016) generates a probability
distribution after a certain number of realisations of the stochastic process. For example, in
the case of the dataset given in Figure 1 above, the generated probability distribution is
given in Figure 2 below.

Figure 2: Outcome of the DBSCAN-Martingale process after 100 realisations.

However, the existing version of the DBSCAN-Martingale algorithm1 is not scalable to Big
Data problems. Since it is written in R language, by default it runs only on a single thread on
the CPU. Our purpose, within EOPEN project, is to optimise it in order to be executed on
High-Performance Computing (HPC) infrastructures with as less resource allocation as
possible.

In the following, we present the Time Operator associated with the DBSCAN-Martingale
process, along with the Age estimations. The Time Operator theory has been applied to
Stochastic Processes like Martingales, aiming to quantify the average innovation time, i.e.
the exact amount of (clock) time that a process takes in generating unpredicted and
unexpected knowledge. In our case, it is necessary to minimise the processing time of Big
Data problems, executed on multiple processing nodes and cores, such as the clustering of
EO and non-EO data.

2.3 Time Operator and Age of the DBSCAN-Martingale processes

Let𝑋 and 𝑌1, 𝑌2, be any random variables having finite expectations 𝐸[|𝑋|] < ∞. Then if 𝑋𝑡 is
defined by 𝑋𝑡 = 𝐸[𝑋|𝑌1, 𝑌2, … , 𝑌𝑡], the sequence of 𝑋𝑡, 𝑡 = 1,2, is a martingale, known as
Doob's Martingale.

1 https://github.com/MKLab-ITI/topic-detection/blob/master/DBSCAN_Martingale.r

3 4 5 6 7

clusters

p
ro

b
a

b
ili

ty

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

https://github.com/MKLab-ITI/topic-detection/blob/master/DBSCAN_Martingale.r

 D4.2 – V2.0

Page 12

The DBSCAN-Martingale generates first a random sample of uniformly distributed random
numbers 𝜖𝑡, 𝑡 = 1,2, … , 𝑇 in [0, 𝜖𝑚𝑎𝑥]. The sample of 𝜖𝑡, 𝑡 = 1,2, … , 𝑇 is sorted in increasing
order and for each density level 𝜖𝑡 a clustering vector is provided by DBSCAN, denoted by
𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡).

Let 𝐹𝑡 be the 𝜎-algebra generated by \\\\{𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖1), 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖2), … , 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡)\\\\}

and let also 𝐹0 be the trivial 𝜎-algebra \\\\{𝛺, ∅\\\\} at stage 𝑡 = 0.

The passage from 𝐹0 to 𝐹1 keeps all clusters found by DBSCAN at stage 𝑡 = 1, defining the

clustering vector 𝐶(1) ≔ 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖1), corresponding to the lowest density level 𝜖1.

At stage, 𝑡 = 2, some of the detected clusters by 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖2) are new and some of them

have also been extracted at stage 𝑡 = 1. DBSCAN-Martingale keeps only the newly detected
clusters of the second stage, 𝑡 = 2, by taking only groups of points of the same cluster ID
with size greater than 𝑚𝑖𝑛𝑃𝑡𝑠:

𝐶(𝑡)[𝑗] ≔ {
0𝑖𝑓𝑝𝑜𝑖𝑛𝑡𝑗𝑏𝑒𝑙𝑜𝑛𝑔𝑠
𝑎𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡)[𝑗]𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where 𝐶(1) = 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖1). The phrase “if point 𝑗 belongs to a previous cluster” means that

point 𝑗 has been already identified as being part of a cluster before, i.e. at a lower density
level 𝜖 (or larger 𝑚𝑖𝑛𝑃𝑡𝑠). By “newly detected clusters” we refer to groups of points which
were previously regarded as noise at a lower density level 𝜖 and now they formulate one

cluster. Observe that each vector 𝐶(𝑡), 𝑡 = 1,2, … , 𝑇 has only the newly extracted clusters
and all other points are marked as noise. The number of clusters is also a random variable,
obtained by the maximum cluster ID observed in 𝐶.

Theorem 1. The Age 𝜂 of the clustering vector 𝐶 is given by:

𝜂 = ∑ 𝑡

𝑇

𝑡=1

|𝐶(𝑡)|2

|𝐶|2

(2)

Proof. Let 𝐻𝑡 be the Hilbert space spanned by conditioning 𝐸𝑡 = 𝐸[. |𝐹𝑡] to our knowledge

up to stage 𝑡, as provided by the 𝜎-algebras 𝐹𝑡 , 𝑡 = 1,2, … , 𝑇. All clustering vectors 𝐶(𝑡), 𝑡 =
0,1, … , 𝑇 are, by construction, mutually orthogonal since they contain different clusters,
projecting the outcome of the final clustering vector 𝐶 to the innovation spaces 𝑁𝑡 = 𝐻𝑡 ⊖

𝐻𝑡−1, which are spanned by 𝐶(𝑡). The final clustering vector 𝐶 is uniquely decomposable as
the direct sum of innovations composing the space of fluctuations 𝐻 = 𝑁1 ⊕ 𝑁2 ⊕ ⋯ 𝑁𝑇:

𝐶 = 𝐶(1) ⊕ 𝐶(2) ⊕ … ⊕ 𝐶(𝑇) (3)

The projections 𝐸𝑡𝐶 = 𝐸[𝐶|𝐹𝑡], 𝑡 = 1,2, … , 𝑇 are the final outcome of the clustering vector
𝐶 which needs to be determined so as to extract all available clusters of various densities.

The projections onto the innovation spaces 𝑁𝑡 are defined as:

𝑃𝑡𝐶 = 𝐶(𝑡) = 𝐸[𝐶|𝐹𝑡] ⊖ 𝐸[𝐶|𝐹𝑡−1] = (𝐸𝑡 ⊖ 𝐸𝑡−1)𝐶 (4)

Our knowledge about the final clustering vector 𝐶 up to stage 𝑡 is restricted to 𝐸𝑡𝐶 and
finally, at stage 𝑡 = 𝑇, we have gained all available knowledge about the vector 𝐶.

The Time Operator, as defined in (Gialampoukidis, et al. 2013), acts on the clustering vector
𝐶 in 𝐻, defining also the internal Age through the corresponding innovation probabilities:

 D4.2 – V2.0

Page 13

𝑝𝑡 = 𝑃𝑟𝑜𝑏\\\\{𝐶 ∈ 𝑁𝑡\\\\} =
|𝑃𝑡𝐶|2

|𝐶 − 𝐸[𝐶]|2
=

|𝐶(𝑡)|2

|𝐶|2

(5)

where 𝐸[𝐶] = 0 because at the beginning of the process the clustering vector 𝐶 is a vector
of zeros and there are no expected clusters without any application of the DBSCAN
algorithm.

Figure 3 illustrates the innovation process of an exemplary sequential extraction of three
clusters. The projections 𝑃𝑡 , 𝑡 = 1,2 of the final clustering vector 𝐶 onto each innovation
space 𝑁𝑡, 𝑡 = 1,2 keep only the newly detected clusters at each stage.

Figure 3: An example where two different density layers𝜀1 and𝜀2 are used to generate two
different outputs of DBSCAN and are then combined into one single result.

Theorem 2: The probability to extract exactly 𝜅 clusters at one DBSCAN-realisation is

𝑃𝑟𝑜𝑏(𝑌 = 𝜅) = ∑ ∏ 𝛿(𝐶𝑖) ∏(1 − 𝛿(𝐶𝑖))

𝑗∈�́�𝑖∈𝐴𝐴∈𝐴𝜅

where 𝐴𝜅 is the set of all subsets of 𝜅 integers that can be selected from 1,2, … , 𝑘, �́� is the
complement of 𝐴, the cluster 𝐶𝑖 has maximum reachability distance 𝑑𝑚𝑎𝑥(𝐶𝑖), 𝑑𝑚𝑖𝑛(𝐶𝑖) =

𝑚𝑖𝑛𝑥𝑗∈𝐶𝑖
𝑑𝑚𝑖𝑛(𝑥𝑗 , 𝐶𝑖), 𝑑𝑚𝑖𝑛(𝑥𝑗 , 𝐶𝑖) is the minimum reachability distance at which document

𝑥𝑗 no longer belongs to cluster 𝐶𝑖, and

𝛿(𝐶𝑖) =
𝑑𝑚𝑎𝑥(𝐶𝑖) − 𝑑𝑚𝑖𝑛(𝐶𝑖)

𝜖𝑚𝑎𝑥

The proof of Theorem 2 is given in (Gialampoukidis, et al. 2019).

Remark 1: The expected number of extracted clusters per DBSCAN-Martingale realisation is:

 D4.2 – V2.0

Page 14

𝐸[𝑌] = ∑ 𝜅

𝑘

𝜅=0

⋅ 𝑃𝑟𝑜𝑏(𝑌 = 𝜅)

where 𝑃𝑟𝑜𝑏(𝑌 = 𝜅) is given by Theorem 2.

Algorithm 1: DBSCAN-Martingale(𝑚𝑖𝑛𝑃𝑡𝑠, 𝜖𝑚𝑎𝑥) return 𝑘

1: Generate a random sample of ⌈𝜂⌉ values in [0, 𝜖𝑚𝑎𝑥]
2: Sort the generated sample 𝜖𝑡, 𝑡 = 1,2, … , ⌈𝜂⌉
3: for 𝑡 = 1 to ⌈𝜂⌉
4: compute 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡)

5: compute 𝐶(𝑡)

6: update the cluster IDs

7: update the vector 𝐶

8: update 𝑘 = 𝑚𝑎𝑥
𝑗

𝐶[𝑗]

9: end for

10: return 𝑘

We denote by ⌈𝜔⌉ the ceiling function of the number 𝜔 and we propose the use of the
closest larger integer to 𝜂 as the necessary number of iterations to extract all clusters. We
also note that Step 4 allows direct parallelisation by sharing the job in ⌈𝜂⌉ processing cores,
i.e. instances in a cloud computing service.

The presented DBSCAN-Martingale algorithm requires 𝑇 iterations of the DBSCAN algorithm,
which runs in 𝑂(𝑛𝑙𝑜𝑔𝑛) if a tree-based spatial index can be used and in 𝑂(𝑛2) without tree-
based spatial indexing (Ankerst, et al. 1999), or in 𝑂(𝑛) in the case of an approximate
DBSCAN algorithm is employed (Chen, et al. 2018). Hence, DBSCAN-Martingale runs in
𝑂(𝑇𝑛𝑙𝑜𝑔𝑛) for tree-based indexed datasets, in 𝑂(𝑇𝑛2) without tree-based indexing and in
𝑂(𝑇𝑛) in the case of an approximate DBSCAN is adopted per iteration. However, in EOPEN
project, each one of the 𝑇 iterations and number of realisations are allocated in multiple
nodes and cores so the algorithm can scale up using an HPC infrastructure. The
implementation of DBSCAN-Martingale on HPC is presented in Section 5.1 .

 D4.2 – V2.0

Page 15

3 CLUSTERING OF NON-EO DATA

3.1 Twitter Textual Data Clustering

The undiminished popularity of social media, and especially of the well-known platform of
Twitter, results in a very large amount of posts on a daily basis, making it challenging to
identify interesting topics and events that are covered by the users. Text clustering aims at
grouping together documents or social media posts (tweets, in the frame of EOPEN) that
discuss the same topic. Topics should be considered as general categories, e.g. weather,
politics, industry, but rather as particular thematic areas and trending topics that are
continuously updated.

Topic detection assumes a vector representation of a text document and is usually
considered as a clustering problem (Aggarwal and Zhai 2012), in absence of training sets. In
the case of text clustering, Latent Dirichlet Allocation (LDA) (Blei, et al. 2003) has been a
model that performs very well but requires the number of topics (i.e. clusters) to be given as
input. There are density based approaches (Ester, et al. 1996) (Ankerst, et al. 1999)
(Campello, et al. 2013) that do not require a priori knowledge of the number of clusters (i.e.
topics), but they are less effective than LDA. In addition, LDA has been generalised to
nonparametric Bayesian approaches, such as the hierarchical Dirichlet process (Teh, et al.
2004) and DP-means (Kulis and Jordan 2004).

Other topic detection approaches in the social media domain involve graph-based
approaches (Petkos, et al. 2017), where a graph clustering algorithm is applied on the graph
of text documents and the decision, whether to link two social media posts or not, is based
on the output of a classifier, which assigns or not the candidate items in the same cluster.

Contrary to the above graph-based approach, the solution adopted in EOPEN runs in an
unsupervised way, using the DBSCAN-Martingale to estimate the number of clusters, as
described in Section 2, and then LDA to assign posts to topics. Experiments on running this
method in a parallel manner are reported in Section 5.1.3 , while its implementation and
integration in the EOPEN system are presented in Section 5.2 .

3.2 Twitter Imagery Data Clustering

In recent years there has been a growing interest in developing effective methods for
content-based image retrieval (CBIR) (Zheng, X., et.al. 2004). Image clustering and
categorization is a technique which could describe the image content at a high level. The
goal of doing image clustering is to find a mapping of the archive images into classes
(clusters) such that the set of classes provide essentially the same information about the
image archive as the entire image-set collection. The generated classes provide a concise
summarization and visualization of the image content that can be used for different tasks
related to image data preprocessing, image database management, user interface designing
and so on. In the usage scenario of EOPEN, we need to fulfil end users’ willing to find their
patterns of interests, thus the social media images need to be clustered into groups. In this
section, we will describe how the image data crawled from Twitter is processed.

 D4.2 – V2.0

Page 16

Error! Reference source not found. illustrates the process of how the Twitter images are
clustered. Regarding the image dataset we get from Twitter, they cannot be directly fed to
the model we built for clustering, as it contains a lot of noises and the size of images in most
cases are not unified. Thus an image pre-processing is necessary as the first step. The aim of
pre-processing is an improvement of the image data that suppresses unwilling distortions or
enhances some image features important for further processing. It usually contains several
operations: data cleaning (remove noise images and pixels), image resizing, rotating, scaling
and so on. After pre-processing, the images will be given to the AutoEncoder model as input.

AutoEncoder is a type of artificial neural network (ANN) which is designed to learn data in an
unsupervised manner to reconstruct the original input, thus to discover a more efficient and
compressed representation. The idea was originated in the 1980s, and later promoted by the
seminal paper by (Hinton and Salakhutdinov 2006).

Figure 5 illustrates the basic structure of an AutoEncoder network. It consists of two
networks:

• Encoder network: The original high-dimension input is translated into a latent low-
dimensional presentation. The output size is accordingly smaller than the original
input size.

• Decoder network: The output of encoder network is the input of decoder network,
and through the decoder network the translated image is recovered. Ideally the
recovered image shall be the same as the input image.

Figure 4: Process of Twitter image clustering

https://en.wikipedia.org/wiki/Autoencoder

 D4.2 – V2.0

Page 17

Figure 5: Architecture of AutoEncoder model (Lilian Weng 2019)

The purpose of using AutoEncoder here is to do the dimension deduction, as clustering is
difficult to be done in high dimensions because the distance between most pairs of points is
similar. Using an AutoEncoder enable you re-represent high dimensional points in a lower-
dimensional space without or with little loss. And compared with other dimension deduction
technologies, its main advantage is that AutoEncoder can learn non-linear transformations,
unlike PCA (Wold et al. 1987), with a non-linear activation function and multiple layers.
However, a single AutoEncoder does not promise a good performance of clustering. In order
to achieve SoA accuracy of clustering, a combination of AutoEncoder and other clustering
methods is usually adopted, for example K-means.

K-means is a method of vector quantization, which aims to partition 𝑛 observations into
𝑘clusters in which each partition belonging to the cluster has the least mean distance
(squared Euclidean distances). The algorithm is processed in two stages:

• Assignment step: Assign each observation to the cluster whose mean has the least
squared Euclidean distance, this is intuitively the "nearest" mean.

• Update step: Calculate the new means (centroids) of the observations in the new
clusters.

The algorithm converges when the assignments no longer change. However, as a type of
greedy algorithm, K-means only solve the local optimum problem and cannot guarantee a
global best solution.

t_SNE: After the clustering of images is performed, how the cluster quality can be
monitored is also a problem, in order to have intuitive overview of the output, the images
and their corresponding clusters shall be visualized. However, as high dimensional data, the
visualization is always a critical problem. The method “t-distributed Stochastic Neighbour
Embedding (t-SNE)” was developed to solve such a problem. t-SNE visualizes high-
dimensional data by giving each data point a location in a two or three-dimensional map.
The technique is a variation of Stochastic Neighbour Embedding (Hinton and Roweis, 2002),

https://www.quora.com/topic/Principal-Component-Analysis
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Centroids

 D4.2 – V2.0

Page 18

which is more straightforward to optimize, and produces significantly better visualizations by
reducing the tendency to crowd points together in the centre of the map (Maaten, L. V. D.
and Hinton, G., 2008). The t-SNE algorithm is mainly composed of two main stages:

• The first stage is to build a probability distribution over pairs of high-dimensional
objects. With this distribution, it is highly probable that similar objects are picked,
while with little possibility that dissimilar objects being picked.

• In the second stage, another probability distribution over the points in the low-
dimensional map is defined, by which the Kullback–Leibler divergence (KLD) between
the two distributions with respect to the locations of the points in the map is
minimized.

With t-SNE, it is possible to visualize large real-world data sets with limited computational
demands. It has been shown that t-SNE outperforms existing state-of-the-art techniques for
visualizing a variety of images.With all the images crawled from Twitter, a prototype of 1,000
flooding images was clustered as shown in Figure 6. As can be seen, the images are clustered
into 3 clusters, each has a distinct centroid. The cluster is implemented using Keras with
TensorFlow on HLRS‘s HPDA infrastructure.

Figure 6: Prototype of clustering flood images from Twitter

 D4.2 – V2.0

Page 19

4 CLUSTERING OF EO DATA

4.1 Image Segmentation

In the majority of Earth Observation applications ground truth information for training and
validation is scarce. Even in scenarios where labelled and/or ground truth data exists (i.e.
land cover maps) their quality is not guaranteed. In PUC 2 when dealing with the food
security monitoring in South Korea, especially when predicting the production of rice, a
significant task is to identify the rice pads from satellite images. As described in D4.1, a
change detection algorithm was proposed to remove outliers from a South Korean land
cover map of 2015, in order to function as a training dataset for the Random Forest (RF)
based classification of rice in 2018. However, with the characteristics of EO applications
stated above, there are several problems arising:

1. Data imbalance: the data which has been marked as rice pads is very little, thus
cannot be directly used for model training.

2. Noise: The images are high resolution and consisted of a huge amount of pixels and
thus contain lots of information. Among the vast information in an image, those
which are not relevant to the interested topic can be treated as noise, how to find
the necessary information with the presence of so much noise is quite challenging.

3. Data Insufficient: For the same area, the satellite only takes around 3 image per
month, thus for the year we studied, there are not enough data to be analyzed with
less than 40 images.

Previously, the rice pads were manually labelled within the satellite images, which consumes
a lot of labour and time. To simplify this process and eliminate the effort spent on this step,
methods which could automatically segment the image, analyse, detect and further label the
rice pads need to be developed.

This section is in regard to the creation of a training dataset for supervised classification of
rice using K-means clustering. Here, the idea is to construct labelled data for the training of a
Random Forest classifier, with the exception that no ground truth information is utilized;
labels are created purely from a clustering algorithm.

4.1.1 Related work in Image Segmentation

Image segmentation is a technique by which an image can be divided into many parts, such
that the information contained in the image can be depicted in an intuitive way. The image
segmentation in most cases is vital for analysis and interpretation of images. The purpose of
image segmentation is to divide an image into semantically interpretable regions with regard
to a particular application and to identify homogeneous regions within the image as discrete
and belonging to distinct objects (Moftah, et al. 2014).

In the last decades, there are many technologies have been developed for segmenting an
image. Among them, several methods are quite popular, which also produce relatively good
results. Theoretically, these methods can be classified into four groups:

• Region Based Segmentation

• Edge Based Segmentation

• Threshold Segmentation

 D4.2 – V2.0

Page 20

• Clustering Based Segmentation

Region based segmentation systems try to group pixels together with identical features
(such as estimated grey level quality) into regions (Lalitha M., et al. 2013). Compared to
other methods, region based segmentation is not so complicated however quite efficiency
and noise resilient. The idea behind it is to split the image based on some criterion i.e.
object, colour, shape and so on.

Edge based segmentation is one of the most basic processing method used in image
segmentation. The idea behind it is to use the edge detection technology to find the
boundary of regions (pixels), and then split the image by the closed margin of objects. The
outcome of this method is usually an image in binary form. Gray histogram and Gradient are
two primary techniques which are used for segmenting image via edge detection (Khan W.,
et al. 2013).

Thresholding method is a primary technique, which simply converts the gray scale image
into binary images by choosing a threshold. What needs to be noticed is that during the
conversion, information might be lost, thus the value of threshold must be optimum to make
sure that the significant knowledge of interested object like shape and position are not lost.

Clustering algorithms are initially developed for defining groups of similar images. However,
in image segmentation it is also widely used. Clustering in image segmentation is defined as
identifying groups of similar image primitive (Puzicha J., et al. 1999). An image can be
segmented based on different clustering criteria, like similarity, centre, continuous points,
density and so on.

4.1.2 Cluster of Pixels

The purpose of this methodology is to make the PUC2 Food Security monitoring framework
as general, transferable and scalable as possible. Although, the change detection
methodology introduced in D4.1, proved adequate for training the RF algorithm, the 2015
land cover map utilized had multiple errors that could not be detected by the change
detection algorithm.

Towards this direction and using unsupervised machine learning techniques, we’ll produce a
set of labelled rice pixels at Seosan and Dangjin districts of South Korea. The input data
comprise of a dense time-series of NDVI features from April to September for the year of
inspection (2018).

There are many different clustering methods that could be used to solve this problem, and
one of the most popular is K-means clustering algorithm. K-means algorithm as an
unsupervised algorithm which could be used to segment the interest area from the
background. The process could be stated as follows:

1. Initialize the number of clusters
2. For each pixel of the image, calculate the Euclidean distance between the initial

cluster centre and the pixel
3. Assign the pixel to a cluster based on its distance to each cluster centre
4. After all pixels of the input image have been assigned to a cluster, recalculate the

new cluster centre
5. Repeat the process until it satisfied the fault tolerance or error

 D4.2 – V2.0

Page 21

6. Reshape the cluster pixels into image

At first, K-means was applied for various numbers of clusters, as seen in Figure 7. The results
appeared to be satisfactory; however, it was observed that many rice pixels were classified
in the same cluster with water pixels, and vice versa. So, it was decided to apply a
hierarchical K-means approach, performing a binary clustering at first to discriminate land
and water. Then via extracting the land layer only K-means was applied for various numbers
of clusters, as seen in Figure 8. The choice for the optimal number of clusters is selected
based on F1-score for each clustering, evaluated against the updated land cover map, as
described in D4.1.

In order to automatically detect which is the rice cluster in each clustering, an expected
mean NDVI of rice pixels must be given for each NDVI feature. The cluster which centre has
the minimum mean squared error (MSE) compared with the given mean NDVIs is considered
as the rice cluster. Below we present figures with the corresponding recall and precision
scores for each experiment. Our goal is to achieve a rather high precision score, ensuring
that the rice cluster includes predominantly rice pixels. Additionally, we tried to achieve a
recall that is as high as possible in order to create a representative training dataset, which
included all different versions of rice in the area of interest.

Figure 7: Recall and precision scores for K-means algorithm with different number of clusters
(from 8 to 19), without extracting water pixels.

In Figure 7, we present the scores achieved by the K-means algorithm for the first scenario,
in which we do not extract the land and water extents first, for a varying number of clusters.
It is obvious that for low number of clusters, recall is usually very high in contrast with
precision, which is at most around 70%. That means that the cluster of rice includes most of
the rice pixels but a large amount of non-rice pixels too. While the number of clusters is
increasing, we observe a balance between the two accuracy metrics (precision, recall) and

 D4.2 – V2.0

Page 22

for even more clusters the precision metric is improved, while recall shows a small
reduction.

Figure 8: Recall and precision scores for K-means algorithm with different number of clusters
(from 4 to 11), having removed water pixels.

Figure 8 shows the accuracy metrics achieved by the hierarchical K-means algorithm, for a
varying number of clusters. We can make the same observations as for Figure 7. The only
significant difference is the number of clusters. Here, it ranges from 4 to 11 and as we can
see the algorithm achieves quite satisfying results from 6 and above, while the number of
clusters for the first algorithm ranges from 8-19 and achieves satisfying results from 13
clusters and above.

4.1.3 Evaluation

In order to compare the ground truth land cover map (see D4.1) and the land cover map that
results from clustering, we trained two separate Random Forest models, using the two
aforementioned datasets respectively. Below, the scores achieved by the predictions of each
model against both datasets, a) clustering-based rice map and b) updated land cover map
(see D4.1) are presented.

Table 1: Classification report of predictions of model trained on clustering-based training
dataset VS the updated land cover map.

Label Precision Recall F1 score Pixels

0 0.93 0.95 0.94 11901997

1 0.85 0.82 0.83 4410363

Table 2: Classification report of predictions of model trained on clustering-based training
dataset VS clustering-based training dataset.

Label Precision Recall F1 score Pixels

 D4.2 – V2.0

Page 23

0 0.99 1 0.99 12032654

1 0.99 0.98 0.99 4279706

From Tables 1 and 2 it is obvious that the predictions of the Random Forest model which
was trained using dataset (a), outputs excellent results when compared to itself. On the
contrary, when it is compared to dataset (b) accuracies are much lower. However, it is
shown in the next paragraph that precision and recall accuracies are higher, since he
updated land cove map is subject to significant noise.

To further examine the quality of the produced clustering based rice map, we record the
misclassified pixels of each model, and from those we drop the common misclassifications
and keep the remaining pixels. Then we created a raster with values only on the positions of
the recorded non-matching misclassified pixels, which were then sieved in order to remove
island pixels. Through the use of photo interpretation, we examined a subset of these
misclassifications. It was observed that from 600 examined hectares, 314 had been correctly
misclassified, while the remaining 286 were indeed errors of the algorithm. All this was done
in order to show that the clustering-based training set actually results in better precision and
recall than the ones showed in Table 1. This is true since the updated land cover map that
was assumed to be a perfect validation dataset appears to have significant errors. Thus
52.33% of the pixels misclassified, according to the Table 1 metrics, were actually classified
correctly.

4.1.4 Future Work

Although K-means has the great advantage of being easy to implement, however, it has
some drawbacks. The quality of the final clustering results strongly depends on the arbitrary
selection of initial centroid. So if the initial centroid is randomly chosen, it will get different
result for different initial centres. And also computational complexity is another term which
we need to consider.

Nowadays, as the DNN has shown its advantages in image processing, a lot of DNN based
methods has come up and shown great improvement in processing different areas of
images, including medical, remote sensing, street view images and so on. Thus, further
research and study employing other algorithms like U-net (Ronneberger O., et al. 2015), W-
net (Xia X., et al. 2017), Seget (Badrinarayanan V., et al. 2017) will be carried on in the future.

4.2 Clustering satellite image patches

In the previous section (Section 4.1 the work has focused on pixel clustering so as to
segment a satellite image into patterns of similar content as groups of pixels. In this section,
we provide a different clustering approach for EO data, where satellite image patches,
mainly from Sentinel 2 imagery, are clustered into groups of patches, in an unsupervised
way. The lack of training data in the EO domain results to the inability of the EO downstream
sector to use supervised machine learning approaches for pattern recognition in satellite
images. The problem becomes challenging when the number of clusters is not known and
the labels are not known or not annotated. To that end, density-based algorithms are
suitable, because they do not require the number of clusters as input, contrary to other
clustering approaches such as k-means. Density-based algorithms require as input two other
parameters: the minimum number of points per cluster and a density level. However, their
estimation is hard to be done and often requires several executions and combination of

 D4.2 – V2.0

Page 24

several outputs from multiple density levels. In this context, we present a parallel
implementation of DBSCAN-Martingale, as it has been presented in Section 2.3 and we
evaluate our approach on a benchmark dataset of Sentinel 2 images with ground-truth
annotation.

4.2.1 Related work

As it has been mentioned in Section 2, over twenty years ago, (Ester et al., 1996) introduced
the now popular DBSCAN, a density-based algorithm for discovering clusters in large spatial
databases with noise. DBSCAN is still being used both in research and real-world
applications, while it has inspired numerous extensions. Some of the main improvements
that the scientific community has focused on is the optimisation of DBSCAN’s parameters,
i.e. MinPts density threshold and Eps neighbourhood radius, and the performance time,
proposing faster versions of the algorithm.

Regarding the parameters optimisation, the algorithm in (Diao et al., 2018) divides the data
set into multiple data regions, sets the appropriate parameters for each data region for local
clustering, and finally merges the data regions. (Kim et al., 2019) focus on minimizing the
additional computation required to determine the parameters by using the approximate
adaptive ε-distance for each density while finding the clusters with varying densities that
original DBSCAN cannot find. (Lu, 2019) proposes a self-adaption grey DBSCAN algorithm
that automatically selects its parameters, whereas (Li et al, 2020b) calculate the parameters
MinPts and Eps based on the optimal k-value, selected after multiple iterations of k-
clustering. Furthermore, in the works of (Hou et al., 2019) and (Li & Chen, 2018), the
problem of proper parameterisation is solved by applying the density peak algorithm and the
natural neighbour algorithm respectively.

Focusing on the Eps parameter, (Lai et al., 2019) designed a new mechanism for the variable
update of the multi-verse optimiser algorithm in order to search the range of Eps, while
(Starczewski & Cader, 2019) determine its value based on an analysis of the sorted values of
the distance function and (Zhu et al., 2018) based on Gauss kernel density. On the contrary,
(Mu et al., 2020) propose a parameter-free algorithm to perform DBSCAN with different-
level parameters.

As far as it concerns the performance, several recent works present revisions of DBSCAN,
aiming to reduce the computation time. (Pandey et al., 2020) target the time spent in the
input/outputs (reading/writing data), (Luchi et al., 2019) reduce the number of patterns
presented to DBSCAN, and (Chen et al., 2018) prune unnecessary distance computations for
high-dimensional data. Work in (Galán, 2019) inspects the neighbourhoods of only a subset
of the objects in the dataset, similarly to the modification of DBSCAN presented in (Jang &
Jiang, 2018) that requires computing only the densities for a chosen subset of points.
Likewise, the approaches of (Shiqiu & Qingsheng, 2019) and (Chen et al., 2019b) run on
selected core points, the first based on locality sensitive hashing and the latter on k-nearest
neighbours.

In addition, (Ding & Yang, 2020) apply a novel randomized k-centre clustering idea to
decrease the complexity of range query, which is a time-consuming step in DBSCAN, while
(Ekseth & Hvasshovd, 2019) present a method and a software with filtered computation of
the dense similarity matrix, which significantly boosts the performance. (Cai et al., 2020)

 D4.2 – V2.0

Page 25

improve the efficiency with Ada-DBSCAN, an extension that consists of a data block splitter
and a data block merger, coordinated by local clustering and global clustering, and (Li et al.,
2020a) with ADBSCAN, an approach for identifying local high-density samples utilizing the
inherent properties of the nearest neighbour graph. Other extensions that present good
performance are the 3W-DBSCAN (Yu et al., 2019), which represents a cluster by a pair of
nested sets called lower bound and upper bound, the Bisecting Min Max DBSCAN (Johnson
et al., 2018), and the method in (Lin et al., 2019) that only computes the distances between
the object and its nearby neighbours.

Towards decreasing the complexity of DBSCAN, (de Berg et al., 2019) avoid spending time on
every edge in the neighbourhood graph by working with box graphs, while (Huang et al.,
2020) exploit the Warshall algorithm to mitigate its complexity. In (Bryant & Cios, 2018),
problem complexity reduces by using a single parameter (choice of k nearest neighbours)
and by handling large variations in cluster density (heterogeneous density). Moreover,
(Mathur et al., 2019) use a combination of distance-based aggregation by overlaying the
data with customized grids and (Boonchoo et al., 2019) utilize bitmap indexing to support
efficient neighbour grid queries.

The upsurge of distributed and high-performance computing technology has motivated
scientists to propose various parallel implementations of DBSCAN. (Yang et al., 2019) present
a framework that divides data into partitions, calculates local DBSCAN results, and merges
local results based on a merging graph. (Deng et al., 2018) enable parallel computing by a
divide-and-conquer method that includes a simplified k-mean partitioning process and a
reachable partition index, and (Gong et al., 2018) present a new approach that supports
real-time clustering of data based on continuous cluster checkpointing. Additional
parallelised versions of DBSCAN are found in the works of (Kumari et al., 2019), (Hu et al.,
2018) applying MapReduce, (Zhou, 2018) with a parallel grid clustering algorithm, and
(Sarma et al., 2019), who developed a scalable distributed implementation of their own
μDBSCAN.

(Wang et al., 2019) and (Ibrahim & Shafiq, 2018) manage to parallelise DBSCAN by using
Quadtree data structure. In the latter, the solution distributes the dataset into smaller
chunks and then utilizes the parallel programming frameworks such as Map-Reduce to
provide an infrastructure to store and process these small chunks of data. (Li, 2020) utilizes
Cover Tree to retrieve neighbours for each point in parallel and the triangle inequality to
filter many unnecessary distance computations. Alternatively, AnyDBC by (Mai et al., 2018),
instead of performing range queries for all objects, iteratively learns the current cluster
structure of the data and selects a few most promising objects for refining clusters at each
iteration.

A further step to distributed implementations of DBSCAN is the optimisation of the involved
stages. (Chen et al., 2019a) propose improvements both in data partitioning stage and in
merging stage. (Han et al., 2018) adopt a partitioning strategy based on kdtree, similarly to
(Shibla & Kumar, 2018), and a new merging technique by mapping the relationship between
the local points and their bordering neighbours. (Tyercha et al., 2019) use a Hilbert curve to
identify the centres for initial partitioning, (Liyang et al., 2019) optimise it with distance
matrix and R-Tree based methods, and (Song & Lee, 2018) suggest a cell-based data
partitioning scheme, which randomly distributes small cells rather than the points
themselves.

 D4.2 – V2.0

Page 26

Finally, in a more technical level, (Hahsler et al., 2019) describe the implementation of
DBSCAN as an R package and (Shahriar et al., 2019) compare the performance of the
algorithm on four different platforms, including R.

4.2.2 Methodology for an automated workflow on HPC

In Section 2.2 we have presented the background and notation on DBSCAN-Martingale, and

Algorithm 1 followed with the estimation of the number of clusters 𝑘. The presented
DBSCAN-Martingale algorithm requires 𝑇 iterations of the DBSCAN algorithm each one of

the 𝑇 iterations and number of realisations are allocated in multiple nodes and cores so the
algorithm can scale up using an HPC infrastructure. The method is tailored on satellite image

patches and the notation (𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡), 𝐶(𝑡), 𝐶[𝑗], etc.) is defined in Section 2.2

In Figure 9 we present our proposed framework for the implementation of Algorithm 2.

Algorithm 2: Parallel-DBSCAN-Martingale(𝑇, 𝑁, 𝑤) return 𝑘
1: Allocate 𝑇 cores and𝑁 nodes
2: Set the number 𝑤 of different values of𝑚𝑖𝑛𝑃𝑡𝑠
3: Extract feature vectors per satellite image patch using any feature extraction method
4: Find 𝜖𝑚𝑎𝑥 using the maximum reachability distance from an OPTICS reachability plot
5: For 𝑚𝑖𝑛𝑃𝑡𝑠 ∈ {𝑚𝑖𝑛𝑃𝑡𝑠1, 𝑚𝑖𝑛𝑃𝑡𝑠2, … , 𝑚𝑖𝑛𝑃𝑡𝑠𝑤}:
6: Generate a random sample of 𝑇 values in [0, 𝜖𝑚𝑎𝑥]
7: Sort the generated sample 𝜖𝑡, 𝑡 = 1,2, … , 𝑇
8: for 𝑡 = 1 to 𝑇
9: compute 𝐶𝐷𝐵𝑆𝐶𝐴𝑁(𝜖𝑡) distributed in each one of the 𝑇 cores

10: compute 𝐶(𝑡) distributed in each one of the 𝑇 cores
11: update the cluster IDs
12: update the vector 𝐶

13: update 𝑘 = 𝑚𝑎𝑥
𝑗

𝐶[𝑗]

14: end for
15: end for

16: compute 𝛿𝑖 = |
�̂�𝑖+1−�̂�𝑖

𝑚𝑖𝑛𝑃𝑡𝑠𝑖+1−𝑚𝑖𝑛𝑃𝑡𝑠𝑖
| , 𝑖 = 1,2, … , 𝑤 − 1

17: compute 𝑚𝑖𝑛𝑃𝑡𝑠 such as: 𝑚𝑖𝑛𝑃𝑡𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖

𝛿𝑖

18: find index 𝑖 such that 𝑚𝑖𝑛𝑃𝑡𝑠 = 𝑚𝑖𝑛𝑃𝑡𝑠𝑖

19: return𝑘𝑖

 D4.2 – V2.0

Page 27

Figure 9: Parallel-DBSCAN-Martingale

4.2.3 Evaluation

Dataset description

For the evaluation of our approach, we have selected the BigEarthNet (http://bigearth.net/)
dataset, which is also referred in D4.3, since it has been used in the experiments for
retrieving most relative EO content. The dataset contains ground-truth annotation about
Sentinel 2 satellite images and counts 590,326 patches of size 120x120. Each patch may
contain one or more of the following labels: water, rice, urban, vineyards, forest, bare rock,
and snow.

By definition, clustering cannot handle a multi-labelling problem (each patch will be assigned
to a single cluster), thus we have excluded the patches whose ground truth is more than one
label. The modified dataset presented noticeable imbalance in the number of patches for
each class (e.g. 220k forest, 1k rice, 52 rock), so we kept only 1,000 patches of each label,
while “rock” had to be completely eliminated, leading to a sum of 6,000 patches.

Finally, since the Parallel-DBSCAN-Martingale requires multiple iterations and is a time
demanding technique, we have decided to take a normally distributed sample of 600
patches.

Results

In our experiment, 𝑇 is set to 5, 𝜖𝑚𝑎𝑥 to 10, and 𝑤 to 12, with 𝑚𝑖𝑛𝑃𝑡𝑠 varying from 5 to 16.
For each𝑚𝑖𝑛𝑃𝑡𝑠, the following table contains the plot with the probability of the number of
clusters and the OPTICS reachability plot.

http://bigearth.net/

 D4.2 – V2.0

Page 28

(a) 𝑚𝑖𝑛𝑃𝑡𝑠 = 5

(b) 𝑚𝑖𝑛𝑃𝑡𝑠 = 6

(c) 𝑚𝑖𝑛𝑃𝑡𝑠 = 7

(d) 𝑚𝑖𝑛𝑃𝑡𝑠 = 8

(e) 𝑚𝑖𝑛𝑃𝑡𝑠 = 9

(f) 𝑚𝑖𝑛𝑃𝑡𝑠 = 10

(g) 𝑚𝑖𝑛𝑃𝑡𝑠 = 11

(h) 𝑚𝑖𝑛𝑃𝑡𝑠 = 12

 D4.2 – V2.0

Page 29

(i) 𝑚𝑖𝑛𝑃𝑡𝑠 = 13

(g) 𝑚𝑖𝑛𝑃𝑡𝑠 = 14

(k) 𝑚𝑖𝑛𝑃𝑡𝑠 = 15

(l) 𝑚𝑖𝑛𝑃𝑡𝑠 = 16

(m) Most probable number of clusters per 𝑚𝑖𝑛𝑃𝑡𝑠

Figure 10: Probability for the estimated number of clusters (a)-(l) and a summary (m).

The proposed framework of Parallel-DBSCAN-Martingale generates a multitude of results for
𝑚𝑖𝑛𝑃𝑡𝑠 = 5,6, . . . ,16 and then gets the final result in an unsupervised way, searching for the
most “stable” number of clusters as an optimal solution (Figure 10). In case such an optimal
value does not exist, we assume that the clusters are very mixed into one and the dataset is
not separable. The feature extraction part generates one vector per satellite image patch
using a Deep Convolutional Neural Network layer. However, the vector representation can
be of any type such as color histograms or other feature vectors. Estimating the number of
clusters with the highest probability for every 𝑚𝑖𝑛𝑃𝑡𝑠 requires computational effort that
needs to be distributed in multiple processing nodes for scalability. The maximum
reachability distance is an indication of 𝜖𝑚𝑎𝑥 and it is sufficient to be computed only for one
value of 𝑚𝑖𝑛𝑃𝑡𝑠.

 D4.2 – V2.0

Page 30

4.2.4 Concluding remarks and future work

Clustering satellite image patches allows a fast grouping of Earth Observation data into
clusters of similar semantic content, i.e. concepts such as water, snow, rock, urban, rice, etc.
This process is unsupervised and requires no label information or number of clusters a priori.
In an operational level, once a cluster of satellite image patches is obtained and one of the
patches gets a label (e.g. this is an urban surface) then this label is propagated to all other
members (patches) of the same cluster.

In this Section we proposed a parallel version of a state-of-the-art clustering algorithm,
namely DBSCAN-Martingale which estimates the number of clusters in an automatic way.
The use of HPC allows us to share the processing task into several processing nodes, offering
a scalable solution to the EO Big Data community. The parameters of the proposed density-
based approach are also learned in an unsupervised way and a stable solution is searched
with many executions and realisations of the process, to get the optimal value for the
number of clusters.

Once the optimal number of clusters is obtained, then any traditional clustering algorithm
(e.g. k-means) can be applied, having as input the estimated number of clusters and the
vector representation of the satellite image patches. The evaluation has taken place on the
correct estimation of the number of clusters as a Key Performance Indicator. The final
version of this framework and additional experiments will be part of the final deliverable of
WP4, namely D4.4 - Change, event, and community detection techniques, which is due on
month M33.

 D4.2 – V2.0

Page 31

5 INTEGRATION

5.1 Implementation on HPC infrastructure

In order to achieve the best performance of clustering, the algorithms will be run on the
infrastructure provided by HLRS, including a dedicated Big Data system, a Cray Urika-GX
(Cray Inc., 2019) and an HPC system, a Cray XC40 (Cray Inc., 2019). On these two clusters,
the environments are setup so that machine learning (ML) and deep learning (DL) algorithms
can be processed effectively. The accessible infrastructure, software stack and the strategy
for code immigration will be described briefly below.

5.1.1 Hardware Infrastructure

The HPDA system Cray Urika-GX and HPC system Cray XC40 are provided by HLRS in order to
accelerate the computation, shorten the running time and improve the performance.

Cray Urika-GX: The Cray Urika-GX is a dedicated Big Data analytics system, specifically
configured with a HPC interconnect (G. Faanes et al., 2012), local SSD storage for fast data
transfers, and 512 GB of RAM per compute node. Especially, near real-time data analytics
are enabled to be performed in memory of HPDA system equipped with the high amount of
RAM. The HPDA system naturally enables different kinds of machine learning and data
analysis tasks, including the clustering task (imagery, textual and pixel). The technical details
of HPDA system can be found in Table 3.

Table 3: Technical specification of the two Cray Urika-GX systems installed at HLRS.

 System 1 (Gilgamesch) System 2 (Enkidu)

Total number of nodes including
management and service nodes

48 16

Number of compute nodes 41 9

Processors per node 2 x Intel Broadwell 18-Core, 2.1 GHz

RAM per node 512 GB

Disk storage per node 2 TB HDD; Intel DC P3608 SSD (1.6TB)

External parallel file system Sonexion 900 with 240 TB (shared), throughput of 4.0 GB/s

Operating system CentOS 7

Available Standard Software • Resource managers: Apache Mesos, Apache YARN

• Data Analytics Frameworks and Tools: Apache Hadoop, Apache

Spark, Cray Graph Engine, GNU R

Main Programming Languages Scala, Java, Python, GNU R

Cray XC40: The High-Performance Computing system “Hazel Hen” is a Cray XC40 machine
with more than 185,000 CPU cores and a total of 964 TB of RAM. The system is predestined
for compute-intensive simulations and scientific applications, however, as training deep
learning algorithms on a huge set of data (especially images) is quite compute-intensive,
thus HPC also plays an important role in deep learning, especially clustering here. The
technical specification of the Cray XC40 at HLRS is listed in Table 4.

Table 4: Technical specification of the Cray XC40 at HLRS.

 Cray XC40 (Hazel Hen)

Cabinets 41 Cabinets à 1.5t

Number of compute nodes 7712

 D4.2 – V2.0

Page 32

Processors per node 2 x Intel Haswell 12-Core, 2.5 GHz

RAM per node 128 GB

Disk storage per node None

External parallel file system Sonexion 1600 with more than 20 PBs (shared)

Operating system Cray Linux Environment (CLE) and Compute Node Linux (CNL)

Available Standard Software • Resource manager: PBS/Torque

• Cray Developer Toolkit (MPI, PAPI, GNU compilers, debugger, …)

• Cray Programming Environment including math and scientific

libraries such as optimized BLAS, LAPACK

Main Programming Languages FORTRAN, C, C++

For more details about the hardware, please refer to D6.2. From beginning of 2020, we have
now the successor system installed, a HPE Apollo named “Hawk”, which has more compute
power.

5.1.2 Software Stack

The processing and storage of big data, especially running machine learning and deep
learning algorithms on large-scale distributed computing system often require specific
frameworks. The Cray Urika-GX builds upon the Apache software stack for data analytics, for
example, Apache Hadoop, Apache Spark, and HDFS, which are the essential fundamentals
for clustering of large amount of textual and imagery data on HPDA.

The Apache Hadoop software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming models
(Apache Hadoop, 2019). The core of Apache Hadoop consists of two parts: one is storage
part which is the well-known Hadoop Distributed File System (HDFS) (Apache Hadoop, 2019)
and the other one is the MapReduce programming model (Apache Hadoop, 2019). The data
will be split into small blocks and distributed across nodes. Then the packaged code will be
transferred to the node and process the small block data in parallel. Therefore, the dataset is
processed faster and more efficiently.

In order to simplify the process of implementation of algorithms, Apache Spark as a cluster-
computing framework is also provided. Spark provides an interface for programming entire
clusters with implicit data parallelism and fault tolerance. MLlib, as Spark’s machine learning
library provides tools including common machine learning algorithms such as classification,
regression, clustering, and collaborative filtering, data pre-processing, such as feature
extraction, transformation, dimensionality reduction, and selection. Besides, Spark also
introduces the concept of ML Pipelines, which provides a uniform set of high-level APIs built
on top of DataFrames (Apache Hadoop, 2019) that help users create and tune practical
machine learning pipelines. For example, for the textual clustering, LDA algorithm could be
implemented through:

from pyspark.ml.clustering import LDA

and for the imagery clustering, K-means could be implemented through:

from pyspark.ml.clustering import KMeans

Besides, Spark also provides the evaluation metrics in Evaluator which can evaluate models
for given parameters, especially the ClusteringEvaluator could be used to evaluate the
performance of clustering models.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib-Evaluator.html#evaluate
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib-Params.html

 D4.2 – V2.0

Page 33

As mentioned above, Apache Spark can cover most common machine learning algorithms.
However, for the processing of imagery data, traditional machine learning algorithms are
sometimes not powerful enough, thus deep learning is introduced. To train a deep learning
model and apply this model to the imagery data, TensorFlow is employed. TensorFlow is an
open source software library for numerical computation using data flow graphs (TensorFlow,
2019). With its high-level API, Keras, common use cases can be solved by building deep
learning models with barely no restriction. For example, in the clustering of imagery data,
AutoEncoder could be simply built through connecting configurable building blocks.

For more information about the software stack in HPDA and HPC, please refer to D6.2.

5.1.3 Execution of text clustering on HPDA

In this part, we report the execution of the text clustering methodology, descripted in
Section 3.1 , as it has been conducted on the HLRS’ HPDA system Urika-GX (Figure 11). The
script that implements the method is written in R language and the main target of the
experiment was to run it on a parallel way.

Figure 11: Welcome message on the login node of the Cray Urika-GX, which contains
hardware information

The parallelization was successfully performed across the cores of a single node, but not
across multiple nodes, due to a limitation of R. The first step was to transfer to the system
the R script and the folder with the 1,520 Wiki pages that served as the dataset of the

 D4.2 – V2.0

Page 34

experiment. This was achieved via the SCP command and confirmed by checking the
contents in the home directory, which exists in the HPDA’s disk:

Figure 12: Home directory structure

Inside the execution environment, version 3.4.3 of R was already pre-installed on the HPDA
system, but additional libraries, such as dbscan 1.1-5 and doParallel 1.0.15, had to be
installed:

Figure 13: Session information of R environment, adjusted for DBSCAN execution

The script automatically detects the number of available cores and suggests using the
maximum number of cores minus one, in order to keep some resources for other tasks to
run. Additionally, there is the option of a hard limit that allows us to set the limit of the
maximum number of cores. The values that were tested are: 1, 2, 4, 8, 16, and 32 cores.

 D4.2 – V2.0

Page 35

Figure 14: R code that registers cores for parallel execution

Regarding the DBSCAN parameters, explained in Section 2, the minimum points were set to
4, the maximum eps value to 0.2, T equals 5, and the realizations are 1,000.

Figure 15: R code with the DBSCAN core settings

The part that we decided to parallelise was the realizations of the algorithm, which are
basically multiple iterations of DBSCAN for different values of the eps parameter. To this
end, the original R script had to be modified, so that each DBSCAN run is performed on a
separate core, in parallel. The “foreach” command allows the execution of the iterations on
different cores at the same time and is activated with the %dopar% command. Each
execution is performed on the whole dataset and returns an estimation of the number (an
integer) of detected clusters. Eventually, the results of all the iterations are gathered to the
“x1” variable.

Figure 16: R code for activation of parallel iterations

After achieving the parallel execution, a further analysis has been realized, to investigate
how time and cost range in relation to the number of used cores. As a reference for prices,
we have selected the EC2 instances of Amazon Web Services (AWS), given that they support
different number of vCores. The official prices are in US dollars, so we avoided converting
them in euros.

 D4.2 – V2.0

Page 36

The fluctuation of execution time and execution cost per number of cores is reported in
Table 5 and also displayed as a line chart in Figure 17. Moreover, we define marginal cost 𝑚𝑖
as:

𝑚𝑖 =
𝑣𝑐𝑖

− 𝑣𝑐𝑖−1

𝑡𝑐𝑖
− 𝑡𝑐𝑖−1

where 𝑣𝑐 is the price value, 𝑡𝑐 is the processing time and 𝑐 is the number of cores. The
fluctuation of marginal cost 𝑚𝑖 is illustrated in Figure 18 and shows that the selection of 4
cores seems an optimal selection, considering the amount of price increase with respect to
the amount of the decrease in processing time.

Table 5: Time and cost analysis of multi-core execution of DBSCAN

EC2
Instance

Cost/hour Hardware Machine
Orientation

Execution Time
(hours)

Execution
Cost

t2.small $0,026 1 core, 2gb RAM General
purpose

85 $2,244

c5d.large $0,115 2 cores, 4gb RAM,
SSD

Compute
Optimized

46,96 $5,400

c5d.xlarge $0,230 4 cores, 8gb RAM,
SSD

Compute
Optimized

24,846 $5,715

c5d.2xlarge $0,460 8 cores, 16gb
RAM, SSD

Compute
Optimized

13,18781 $6,066

c5d.4xlarge $0,920 16 cores, 32gb
RAM, SSD

Compute
Optimized

7,083 $6,516

c5d.9xlarge $2,070 32 cores, 72gb
RAM, SSD

Compute
Optimized

3,75 $7,763

 D4.2 – V2.0

Page 37

Figure 17: Execution Time (hours) and Execution Cost ($) vs Cores

Figure 18: Marginal cost while increasing number of cores

 D4.2 – V2.0

Page 38

5.1.4 Execution of EO clustering on HPDA

In this part, the execution of EO clustering methodology which is described in Section 3.2.2
will be reported. In order to achieve optimized performance, DBScan on Apache Spark was
deployed on HLRS’ HPDA system Urika-GX, and the script that implements the method is
written in Python.

Implementation details:

Distribute implementation of DBScan works by casting a virtual fishnet on the data. DBScan
computation is run separately on the data points residing in the same cell. User can define
the cell size depending on the data. Points in the desired cell that are epsilon distance away
from the points in all the other cells are broadcasted to the same cell. Finally, merging step
would take into account both of these points. Local clusters are produced for each cell are
then merged into one global cluster, which is achieved by relabeling all the points in cells
from their local cluster to global cluster. In Figure 19, data is divided into two cells. Green
circle defines the local cluster for Cell 1, whereas red circle defines the local cluster for Cell 2.
Blue circle defines the global cluster which is achieved by merging the local clusters of Cell 1
and Cell 2.

Figure 19:Distributed DBScan Implementaion2

Running DBScan Spark on Urika-GX:

Following command is used to execute DBScan on Apache Spark

spark-submit –total-executor-cores $core –executor-memory 450g

$path_to_jar $path_to_properties

2 https://github.com/mraad/dbscan-spark

https://github.com/mraad/dbscan-spark

 D4.2 – V2.0

Page 39

Here $core defines the number of cores and $path_to_jar points to the implementation of
DBScan Spark. $path_to_properties is the path to the properties file that contains the
configuration information. Properties file contains the following parameter: path to input
file, path to output file, minimum points value and epsilon value.

Performance Evaluation:

We performed an experiment on 500000 randomly generated 2D points to test the
performance of distributed DBScan on multiple cores. We used epsilon and min points value
as 5. The test is done with 1, 10, 36, 72 cores, and Figure 19 illustrates how execution time
varies as the number of cores increase.

As the dataset size is small, after sometime increasing the number of cores doesn’t improve
the performance significantly. It could also increase the execution time, where
communication time could become longer than whole processing time.

Figure 20: Properties file example for running
DBScan on Apache Spark

Figure 21: DBScan on Apache Spark: Execution time vs Number of cores

 D4.2 – V2.0

Page 40

5.2 Integration with EOPEN Platform

Out of the clustering methods described in Section 3 and Section 4, the clustering of non-EO
textual data, i.e. texts from Twitter posts, has been also integrated in the EOPEN system.
First, a service that has been implemented to detect clusters of tweets (also referred as
topics) is described, along with its input parameters, its output results and its variations.
Secondly, follows the description of how topics are visualised in the EOPEN Dashboard by
using the aforementioned service. Thirdly, we present an alternative workflow of this task,
which is currently under development.

5.2.1 Text Clustering Service

The text clustering service is able to discover topics inside a set of tweets, by grouping them
accordingly to the similarity of their content. The service is implemented in JAVA and offers
three options: 1) find topics in 𝑥 most recent tweets, 2) find topics in 𝑥 previous days, 3) find
topics in tweets that contain a specific keyword. The input parameters change respectively,
but common parameters in all three variations are the language and the use case of interest.
In detail, these are the different ways to call the service:

1. http://.../api/topicDetection/usingRecent?language=<>&pilot=<>&num=<>,
e.g.
http://.../api/topicDetection/usingRecent?language=English&pilot=Floods&num=400,
where the service looks for topics in the 400 most recent English tweets about floods.

2. http://.../api/topicDetection/usingDays?language=<>&pilot=<>&days=<>,
e.g.
http://.../api/topicDetection/usingDays?language=English&pilot=Floods&days=10,
where the service looks for topics in the English tweets about floods that were
posted in the 10 last days.

3. http://.../api/topicDetection/usingKeyword?language=<>&pilot=<>&keyword=<>,
e.g.
http://.../api/topicDetection/usingKeyword?language=English&pilot=Floods&keywor
d=storm, where the service looks for topics in English tweets about floods that
contain the keyword “storm”.

 D4.2 – V2.0

Page 41

Then, the service communicates with the MongoDB database where collected social media is
stored and the tweets that satisfy the input criteria are printed to text files. This set of files is
passed as input to an R script, which performs a combination of density-based clustering
with LDA (see subsection 3.1). The results of the R script are converted to JSON format by
the service and involve: 1) the ID of each detected cluster, 2) the words most frequently
mentioned in the tweets of each cluster, and 3) the IDs of the tweets that comprise each
cluster. A part of the response of the service (for one cluster) can be seen in Figure 22.

The service has been dockerised and deployed in the EOPEN platform and it can be accessed
by processes and the User Portal.

5.2.2 Visualisation of topics in the EOPEN Dashboard

In order to offer to end users the ability to use the above service in a friendly way, it has
been included in the EOPEN Dashboard. A core technical requirement of the EOPEN platform
defines that the end users must be able to customise their own dashboard, so every EOPEN
module is implemented in the Vue.js3 framework as a separate component, which can be

3 https://vuejs.org/

Figure 22: A detected topic as presented in the response of the text clustering service

https://vuejs.org/

 D4.2 – V2.0

Page 42

added, shaped, positioned and removed from the interface. Thus, three new components
have been created to exploit the text clustering service, while trying to reuse what has been
already created for displaying the collected tweets.

The first component (Figure 23), named “Topics Filter”, is a simple form where the user can
select on which collection of tweets the text clustering will run. Each collection is defined by
use case and language and corresponds to a different collection in the MongoDB database. It
should be noted that the option to search for topics in the Korean tweets about food
security is omitted, because their special characters cannot be handled yet. When clicking on
the “Get recent topics” button, the text clustering service is called for the 400 most recent
tweets of the selected collection. This number is not adjustable by the user and is set to 400,
because the service achieves a good response time with such a size (approximately 3
seconds). This is a limitation can be addressed with an alternative implementation (see
Section 5.2.3).

Figure 23: Topics Filters component

The results of the service are visualised to the user in a second component (Figure 24),
named “Topics List”. Each of the detected clusters is presented as a word cloud, i.e. an
illustration of single words where their importance is shown with font size. The words
displayed derive from the attribute “labels” of the service’s response, while the word clouds
are created with the “vue-wordcloud” component4. In Figure 24 an example of word clouds
can be seen; the term “snow” is present in all topics, since all tweets from this collection
refer to that, but then every cloud shows a different topic regarding snow. As far as it
concerns the IDs of the tweets that belong to each cluster, they are saved in the background
and are used for the following visualisation.

4 https://github.com/feifang/vue-wordcloud

https://github.com/feifang/vue-wordcloud

 D4.2 – V2.0

Page 43

Figure 24: Topics List component

Every time a topic is clicked, the complete set of tweets that comprises it appears in a third
component (Figure 25), named “Topic Tweets List”. This component reuses a ready Vue.js
template to display a tweet, which has been previously created for presenting the collected
tweets.

 D4.2 – V2.0

Page 44

Figure 25: Topic Tweets List component

Figure 26: A custom dashboard that includes all the text clustering components

 D4.2 – V2.0

Page 45

As already mentioned, the users are able to modify their dashboard as they wish, so in
Figure 26 a custom dashboard can be seen, containing all three components that are
relevant to the text clustering, i.e. the filters, the topics list, and the list of tweets per topic.

5.2.3 An alternative workflow for the text clustering

The current implementation, where the text clustering algorithm runs every time the service
is called, shows a certain limitation: the end user always has to wait for the clustering to be
completed in order to see the topics. For this reason, the input is also limited to 400 most
recent tweets, so as to expect a good response time from the service.

Based on this limitation, a new workflow for the task of text clustering is proposed () and is
currently under development. Instead of calling the text clustering service every time on the
fly, a process is responsible to get the topics in the background (for more details on
processes of the EOPEN platform, refer to D6.3). The process, scheduled to run every six
hours, calls the text clustering service for each collection of tweets (e.g. Italian tweets about
floods, Finnish tweets about snow, etc.) and stores the detected clusters in a database. From
the perspective of the EOPEN Dashboard, when the user will click the button to get most
recent topics, a simple API will query the database for the latest records and immediately
show the results.

The final status of this alternative implementation will be reported in D4.4 (M33).

Figure 27: The future workflow of text clustering in EOPEN

 – VError! Unknown document property name.

Page 46

6 CONCLUSIONS

In this deliverable we have presented the clustering techniques on both EO and non-EO
data, which is finally offered as a service to end users.

In Section 2, we have defined the problem of estimating the number of clusters, presented
solutions proposed by state of the art works and proposed a novel technique, namely
DBSCAN-Martingale. Section 3 focused on the clustering of non-EO data, i.e. social media
data and specifically Twitter posts. For the textual data, after a review of state of the art
algorithms, a combination of density-based clustering and LDA has been proposed. With
respect to clustering of images, we presented a proof-of-concept for unsupervised image
clustering utilizing artificial neural networks, such as an AutoEncoder to efficiently perform
clustering on a HPDA infrastructure using Keras with TensorFlow. Results are then mapped
onto a two-dimensional plane, where the distance between images represents their
similarity. Each identified group is then described through a representative thumbnail. In
Section 4, we have presented the work done for segmentation of EO images, including
studying the state of the art algorithms, implementing K-means and hierarchical K-means on
pixels and, finally, getting the primary outcome. Section 4 also included a new approach of
clustering satellite imagery patches in an unsupervised way. Section 5 described the
procedures for implementing the algorithms on HPC and HPDA infrastructure, together with
an evaluation of processing time and cost in dollars in comparison to the number of cores.
Section 5 continued with the implementation of a text clustering service, its integration in
the EOPEN platform and dashboard, and a description of its next version.

The main achievements can be summarized as:

• The novel methodology of DBSCAN-Martingale to estimate the number of clusters
has been introduced.

• A text clustering technique that combines DBSCAN-Martingale and LDA has been
proposed. Its implementation and integration to the EOPEN platform, as well as the
visualisation of its results on the EOPEN dashboard have been described.

• A prototype of Twitter images clustering has been performed on a sample dataset
consisted of 1000 images crawled from Twitter posts.

• A prototype of performing pixel clustering on EO images in an unsupervised way to
do image segmentation has been provided.

• A new approach of clustering satellite image patches in an unsupervised way.

• The clustering algorithms have been implemented on HPC and HPDA infrastructure
utilizing Apache Spark, TensorFlow and so on with faster outcome. An analysis of
processing time and cost in relation to the number of cores has been carried out.

The work that remains to be done for this task until the end of the project will focus on the
implementation of the clustering technique for EO patches in a parallel manner and the
completion of the respective experiments.

 – VError! Unknown document property name.

Page 47

7 REFERENCES

Aggarwal, C. C., Zhai, C., 2012. “A survey of text clustering algorithms”, Mining text data,
Springer, Boston, MA, pp. 77-128.

Ankerst, M., Breunig, M. M., Kriegel, H. P., Sander, J., 1999. “OPTICS: ordering points to
identify the clustering structure”, ACM Sigmod record, Vol. 28, No. 2, pp. 49-60.

Antoniou, I., Gialampoukidis, I., Ioannidis, E., 2015. “Age and time operator of evolutionary
processes”, International Symposium on Quantum Interaction, Springer, pp. 51–75.

Apache Hadoop (2019), Hadoop 1.2.1 Documentation. [Online] Available:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Blei, D.M., Jordan, M.I., 2003. “Modeling annotated data”, Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in information retrieval,
ACM, pp. 127–134.

Boonchoo, T., Ao, X., Liu, Y., Zhao, W., Zhuang, F. and He, Q., 2019. Grid-based DBSCAN:
Indexing and inference. Pattern Recognition, 90, pp.271-284.

Bryant, A. and Cios, K., 2018. RNN-DBSCAN: A density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data
Engineering, 30(6), pp.1109-1121.

Cai, Z., Wang, J. and He, K., 2020. Adaptive Density-Based Spatial Clustering for Massive Data
Analysis. IEEE Access, 8, pp.23346-23358.

Campello, R.J., Moulavi, D., Sander, J., 2013. “Density-based clustering basedon hierarchical
density estimates”, Advances in Knowledge Discovery and Data Mining, Springer, pp. 160–
172.

Chen, G., Cheng, Y. and Jing, W., 2019. DBSCAN-PSM: an improvement method of DBSCAN
algorithm on Spark. International Journal of High Performance Computing and Networking,
13(4), pp.417-426.

Chen, Y., Tang, S., Bouguila, N., Wang, C., Du, J., Li, H., 2018. “A fast clustering algorithm
based on pruning unnecessary distance computations in DBSCAN for high-dimensional data”,
Pattern Recognition, 83, 375-387.

Chen, Y., Zhou, L., Pei, S., Yu, Z., Chen, Y., Liu, X., Du, J. and Xiong, N., 2019. KNN-BLOCK
DBSCAN: Fast Clustering for Large-Scale Data. IEEE Transactions on Systems, Man, and
Cybernetics: Systems.

Cray Inc., Cray Urika-GX Agile Analytics Platform. [Online] Available:
https://www.cray.com/sites/default/files/Cray-Urika-GX-Product-Brief.pdf. Accessed on:
Jan. 18 2019.

Cray Inc., Cray XC40: Scaling Across the Supercomputer Performance Spectrum. [Online]
Available: https://www.cray.com/sites/default/files/resources/CrayXC40Brochure.pdf.
Accessed on: Jan. 18 2019.

 – VError! Unknown document property name.

Page 48

de Berg, M., Gunawan, A. and Roeloffzen, M., 2019. Faster DBScan and HDBScan in low-
dimensional Euclidean spaces. International Journal of Computational Geometry &
Applications, 29(01), pp.21-47.

Deng, C., Song, J., Cai, S., Sun, R., Shi, Y. and Hao, S., 2018. K-DBSCAN: an efficient density-
based clustering algorithm supports parallel computing. International Journal of Simulation
and Process Modelling, 13(5), pp.496-505.

Diao, K., Liang, Y. and Fan, J., 2018, August. An Improved DBSCAN Algorithm Using Local
Parameters. In International CCF Conference on Artificial Intelligence (pp. 3-12). Springer,
Singapore.

Ding, H. and Yang, F., 2020. On Metric DBSCAN with Low Doubling Dimension. arXiv preprint
arXiv:2002.11933.

Dockhorn, A., Braune, C., Kruse, R., 2016. “Variable density based clustering”,
Computational Intelligence (SSCI), 2016 IEEE Symposium Series on, IEEE, pp. 1–8.

Ekseth, O.K. and Hvasshovd, S.O., 2019. How an optimized DBSCAN implementation reduces
execution-time and memory-requirements for large datasets. Proceedings of the Patterns.

Ester, M., Kriegel, H. P., Sander, J., Xu, X., 1996. “A density-based algorithm for discovering
clusters in large spatial databases with noise”, Kdd, Vol. 96, No. 34, pp. 226-231.

Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., ... & Reinhard, J.
(2012, November). Cray cascade: a scalable HPC system based on a Dragonfly network. In
SC'12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (pp. 1-9). IEEE.

Galán, S.F., 2019. Comparative evaluation of region query strategies for DBSCAN clustering.
Information Sciences, 502, pp.76-90.

Gan, J., Tao, Y., 2015. “Dbscan revisited: mis-claim, un-fixability, and approximation”,
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
ACM, pp. 519–530.

Getz, G., Levine, E., Domany, E., 2000. “Coupled two-way clustering analysis of gene
microarray data”, Proceedings of the National Academy of Sciences 97, 12079–12084.

Gialampoukidis, I., Gustafson, K., Antoniou, I., 2013. “Financial Time Operator for random
walk markets”, Chaos, Solitons & Fractals, 57, 62-72.

Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I., 2016. “A hybrid framework for news
clustering based on the DBSCAN-Martingale and LDA”, International Conference on Machine
Learning and Data Mining in Pattern Recognition, pp. 170-184, Springer, Cham.

Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I., Antoniou, I., 2017. “Topic detection using
the dbscan-martingale and the time operator”, Skiadas CH, editor, Proceedings of the 17th
Applied Stochastic Models and Data Analysis International Conference with the 6th
Demographics Workshop ASMDA2017, 2017 June 6-9, London, UK, ISAST, p. 387-95.

Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I., Antoniou, I., 2019. “Probabilistic density-
based estimation of the number of clusters using the DBSCAN-martingale process”, Pattern
Recognition Letters, 123, 23-30.

 – VError! Unknown document property name.

Page 49

Girvan, M., Newman, M.E., 2002. “Community structure in social and biological networks”,
Proceedings of the national academy of sciences 99, 7821–7826.

Gong, Y., Sinnott, R.O. and Rimba, P., 2018, June. Rt-dbscan: Real-time parallel clustering of
spatio-temporal data using spark-streaming. In International Conference on Computational
Science (pp. 524-539). Springer, Cham.

Hahsler, M., Piekenbrock, M. and Doran, D., 2019. dbscan: Fast density-based clustering with
r. Journal of Statistical Software, 25, pp.409-416.

Han, D., Agrawal, A., Liao, W.K. and Choudhary, A., 2018, December. Parallel DBSCAN
Algorithm Using a Data Partitioning Strategy with Spark Implementation. In 2018 IEEE
International Conference on Big Data (Big Data) (pp. 305-312). IEEE.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. science, 313(5786), 504-507.

Hou, J., Lv, C., Zhang, A. and Xu, E., 2019, September. Merging DBSCAN and Density Peak for
Robust Clustering. In International Conference on Artificial Neural Networks (pp. 595-610).
Springer, Cham.

Hu, X., Liu, L., Qiu, N., Yang, D. and Li, M., 2018. A MapReduce-based improvement algorithm
for DBSCAN. Journal of Algorithms & Computational Technology, 12(1), pp.53-61.

Huang, M., Yan, Y., Xu, L. and Ye, L., 2020. Using Warshall to Solve the Density-linked Density
Clustering Algorithm. American Journal of Applied Mathematics, 8(1), pp.11-16.

Ibrahim, R. and Shafiq, M.O., 2018, June. Towards a New Approach for Empowering the MR-
DBSCAN Clustering for Massive Data Using Quadtree. In 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS) (pp. 91-98). IEEE.

Jang, J. and Jiang, H., 2018. DBSCAN++: Towards fast and scalable density clustering. arXiv
preprint arXiv:1810.13105.

Johnson, T., Prabhu, K., Parvatkar, S., Naik, A. and Temkar, P., 2018. The Bisecting Min Max
DBSCAN Algorithm.

Khan, W. (2013). Image segmentation techniques: A survey. Journal of Image and Graphics,
1(4), 166-170.

Kim, J.H., Choi, J.H., Yoo, K.H. and Nasridinov, A., 2019. AA-DBSCAN: an approximate
adaptive DBSCAN for finding clusters with varying densities. The Journal of Supercomputing,
75(1), pp.142-169.

Kulis, B., Jordan, M.I., 2011. "Revisiting K-means: new algorithms via Bayesian
nonparametrics", arXiv preprint arXiv:1111.0352.

Kumari, A., Shrivastava, V. and Pandey, A., 2019. Reduction of DBSCAN Time Complexity for
Data Mining Using Parallel Computing Techniques.

Lai, W., Zhou, M., Hu, F., Bian, K. and Song, Q., 2019. A new DBSCAN parameters
determination method based on improved MVO. IEEE Access, 7, pp.104085-104095.

 – VError! Unknown document property name.

Page 50

Lalitha, M., Kiruthiga, M., & Loganathan, C. (2013). A survey on image segmentation through
clustering algorithm. International Journal of Science and Research, 2(2), 348-358

Li, H., Liu, X., Li, T. and Gan, R., 2020. A novel density-based clustering algorithm using
nearest neighbor graph. Pattern Recognition, 102, p.107206.

Li, J. and Chen, Y.B., 2018. Improved DBSCAN Algorithm Based on Natural Neighbors.
Modern Computer, 2018(13), p.2.

Li, J.W., Han, X.Q., Jiang, J.W., Hu, Y. and Liu, L., 2020. An Efficient Clustering Method for
Dbscan Geographic Spatio-Temporal Large Data with Improved Parameter Optimization. The
International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42, pp.581-584.

Li, S.S., 2020. An Improved DBSCAN Algorithm Based on the Neighbor Similarity and Fast
Nearest Neighbor Query. IEEE Access, 8, pp.47468-47476.

Lin, P., Hong, Z., Feng, W., Li, Y. and Wu, L., 2019, October. Design and Implementation of an
Improved DBSCAN Algorithm. In 2019 IEEE 3rd Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 1834-1839).
IEEE.

Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D., 2017. “Elastic net hypergraph learning for image
clustering and semi-supervised classification”, IEEE Transactions on Image Processing 26,
452–463.

Liyang, L., Hongzhen, S.O.N.G., Shen, W.A.N.G. and Jinyu, L., 2019. Parallel Implementation
of DBSCAN Algorithm Based on Spark.

Louhichi, S., Gzara, M., Abdallah, H.B., 2014. “A density based algorithm for discovering
clusters with varied density”, Computer Applications and Information Systems (WCCAIS),
2014 World Congress on, IEEE, pp. 1–6.

Lu, S., 2019. Self-adaption grey DBSCAN clustering. arXiv preprint arXiv:1912.11477.

Luchi, D., Rodrigues, A.L. and Varejão, F.M., 2019. Sampling approaches for applying DBSCAN
to large datasets. Pattern Recognition Letters, 117, pp.90-96.

Mai, S.T., Assent, I., Jacobsen, J. and Dieu, M.S., 2018. Anytime parallel density-based
clustering. Data Mining and Knowledge Discovery, 32(4), pp.1121-1176.

Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kristensen, J., Birk, M., 2017. “Scalable and
interactive graph clustering algorithm on multicore cpus”, Data Engineering (ICDE), 2017
IEEE 33rd International Conference on, IEEE, pp. 349–360.

Mathur, V., Mehta, J. and Singh, S., 2019. HCA-DBSCAN: HyperCube Accelerated Density
Based Spatial Clustering for Applications with Noise. arXiv preprint arXiv:1912.00323.

Moftah, H. M., Azar, A. T., Al-Shammari, E. T., Ghali, N. I., Hassanien, A. E., & Shoman, M.
(2014). Adaptive K-means clustering algorithm for MR breast image segmentation. Neural
Computing and Applications, 24(7-8), 1917-1928.

Moumtzidou, A., Mironidis, T., Markatopoulou, F., Andreadis, S., Gialampoukidis, I.,
Galanopoulos, D., Ioannidou, A., Vrochidis, S., Mezaris, V.,Kompatsiaris, I., et al., 2017.

 – VError! Unknown document property name.

Page 51

“Verge in vbs 2017”, International Conference on Multimedia Modeling, Springer, pp. 486–
492.

Mu, B., Dai, M. and Yuan, S., 2020, January. DBSCAN-KNN-GA: a multi Density-Level
Parameter-Free clustering algorithm. In IOP Conference Series: Materials Science and
Engineering (Vol. 715, No. 1, p. 012023). IOP Publishing.

Newman, M., Girvan, M., 2004. “Finding and evaluating community structure in networks”,
Physical Review E 69, 026113.

Pandey, S., Samal, M. and Mohanty, S.K., 2020. An SNN-DBSCAN Based Clustering Algorithm
for Big Data. In Advanced Computing and Intelligent Engineering (pp. 127-137). Springer,
Singapore.

Petkos, G., Schinas, M., Papadopoulos, S., Kompatsiaris, Y., 2017. “Graph-based multimodal
clustering for social multimedia”, Multimedia Tools and Applications, 76(6), 7897-7919.

Puzicha, J., Hofmann, T., & Buhmann, J. M. (1999, June). Histogram clustering for
unsupervised image segmentation. In Proceedings. 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 602-608). IEEE.

Romesburg, C. (2004). Cluster analysis for researchers. Lulu. com.

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention (pp. 234-241). Springer, Cham.

Sarma, A., Goyal, P., Kumari, S., Wani, A., Challa, J.S., Islam, S. and Goyal, N., 2019,
September. μDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting Spatial
Locality. In 2019 IEEE International Conference on Cluster Computing (CLUSTER) (pp. 1-11).
IEEE.

Schneider, J., Vlachos, M., 2013. “Fast parameterless density-based clustering via random
projections”, Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management, ACM, pp.861–866.

Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X., 2017. “Dbscan revisited, revisited:
why and how you should (still) use dbscan”, ACM Transactions on Database Systems (TODS)
42, 19.

Shahriar, N., Al Faisal, S.A., Pinjor, M.M., Rafi, M.A.S.Z. and Sarkar, A.R., 2019, December.
Comparative Performance Analysis of K-Means and DBSCAN Clustering algorithms on various
platforms. In 2019 22nd International Conference on Computer and Information Technology
(ICCIT) (pp. 1-6). IEEE.

Shibla, T.P. and Kumar, K.S., 2018, June. Improving Efficiency of DBSCAN by Parallelizing kd-
Tree Using Spark. In 2018 Second International Conference on Intelligent Computing and
Control Systems (ICICCS) (pp. 1197-1203). IEEE.

Shiqiu, Y. and Qingsheng, Z., 2019, October. DBSCAN Clustering Algorithm Based on Locality
Sensitive Hashing. In Journal of Physics: Conference Series (Vol. 1314, No. 1, p. 012177). IOP
Publishing.

 – VError! Unknown document property name.

Page 52

Song, H. and Lee, J.G., 2018, May. RP-DBSCAN: A superfast parallel DBSCAN algorithm based
on random partitioning. In Proceedings of the 2018 International Conference on
Management of Data (pp. 1173-1187).

Starczewski, A. and Cader, A., 2019, June. Determining the Eps Parameter of the DBSCAN
Algorithm. In International Conference on Artificial Intelligence and Soft Computing (pp. 420-
430). Springer, Cham.

Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, 2004. “Sharing clusters among related groups:
Hierarchical Dirichlet processes”, NIPS, pp. 1385–1392.

TensorFlow (2019), An end to end open source machine learning platform. [Online]
Available: https://www.tensorflow.org

Tyercha, E.R., Kazmaier, G.S., Gildhoff, H., Pekel, I., Volker, L. and Grouisborn, T., SAP SE,
2019. Hilbert curve partitioning for parallelization of DBSCAN. U.S. Patent 10,318,557.

Wang, Y., Gu, Y. and Shun, J., 2019. Theoretically-Efficient and Practical Parallel DBSCAN.
arXiv preprint arXiv:1912.06255.

Weng Lilian (2019): From AutoEncoder to Beta-VAE. [Online] Available:
https://lilianweng.github.io/lil-log/2018/08/12/from-AutoEncoder-to-beta-vae.html

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3), 37-52.

Xia, X., & Kulis, B. (2017). W-net: A deep model for fully unsupervised image segmentation.
arXiv preprint arXiv:1711.08506.

Yang, K., Gao, Y., Ma, R., Chen, L., Wu, S. and Chen, G., 2019, April. DBSCAN-MS: Distributed
Density-Based Clustering in Metric Spaces. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE) (pp. 1346-1357). IEEE.

Yu, H., Chen, L., Yao, J. and Wang, X., 2019. A three-way clustering method based on an
improved DBSCAN algorithm. Physica A: Statistical Mechanics and its Applications, 535,
p.122289.

Zhou, G.J., 2018. Research on Parallel Design of DBSCAN Clustering Algorithm in Spatial Data
Mining. DEStech Transactions on Engineering and Technology Research, (ecar).

Zheng, X., Cai, D., He, X., Ma, W. Y., & Lin, X. (2004, October). Locality preserving clustering
for image database. In Proceedings of the 12th annual ACM international conference on
Multimedia (pp. 885-891). ACM.

Zhu, L., Zhu, J., Bao, C., Zhou, L., Wang, C. and Kong, B., 2018, December. Improvement of
DBSCAN Algorithm Based on Adaptive Eps Parameter Estimation. In Proceedings of the 2018
International Conference on Algorithms, Computing and Artificial Intelligence (pp. 1-7).

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

