
D3.1 – V1

 Page 1

EOPEN

opEn interOperable Platform for unified access and analysis of Earth

observatioN data

H2020-776019

D3.1

EO data acquisition from the
Collaborative Ground Segment and
quality control

Dissemination level: Public

Contractual date of delivery: Month 18, 30/04/2019

Actual date of delivery: Month 18, 30/04/2019

Date of resubmission: 03/07/2020

Work package: WP3 Knowledge discovery and content extraction

D3.1 – V1

 Page 2

Task: T3.1 EO data acquisition from the Collaborative Ground
Segment and quality control

Type: Report

Approval Status: Approved

Version: 1.0

Number of pages: 59

Filename: D3.1-EO data acquisition from the Collaborative Ground
Segment and quality control_v1.0.docx

Abstract

This deliverable reports on the development of an Application Programming Interface (API)
that functions as a single point of access for Sentinel data, connecting to multiple Sentinel
Data Access Points. Specifically, it reports on the issue of the fragmented access to Sentinel
data through the different available access points, which differ in performance, Sentinel
mission availability, geographic coverage and rolling archive policy. This deliverable then
discusses how the newly implemented single Sentinel Data access point, which is called
Umbrella Hub, resolves the aforementioned issues by providing a uniform access to Sentinel
data for all missions and by downloading from the best performing hub. Finally, the current
version addresses all comments received in the 2nd review and explains the differences
between this application and the Sentinel Linker Service, which has been developed during
the NextGEOSS project.

The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

co-funded by the European Union

D3.1 – V1

 Page 3

History

Version Date Reason Revised by Approved By

0.1 10/04/2019 Initial Draft Athanasios
Drivas

Vasileios
Sitokonstantinou

0.2 13/04/2019 Contributions Vasileios
Sitokonstantinou

Ioannis Papoutsis

0.3 20/04/2019 Contributions Athanasios
Drivas

Vasileios
Sitokonstantinou

0.4 24/04/2019 Contributions Vasileios
Sitokonstantinou

Ioannis Papoutsis

0.5 26/04/2019 Internal Review Dennis Hoppe

0.6 28/04/2019 Updated document
after review

Athanasios
Drivas

Vasileios
Sitokonstantinou

0.6 29/04/2019 G. Vingione

1.0 03/07/2020 Resubmission after
the 2nd Periodic
Review

Athanasios
Drivas

Vasileios
Sitokonstantinou
M. Gabriella
Scarpino

Ioannis Papoutsis

Author list

Organization Name Contact Information

NOA Athanasios Drivas tdrivas@noa.gr

NOA Vasileios Sitokonstantinou vsito@noa.gr

NOA Ioannis Papoutsis ipapoutsis@noa.gr

NOA Dimitris Filippas dfilippas@noa.gr

NOA Charalampos Mageiridis cmageiridis@protonmail.com

NOA Christos Rousakis chroussakis@noa.gr

NOA Fotis Tsamis ftsamis@noa.gr

FMI Petteri Karsisto petteri.karsisto@fmi.fi

CERTH Stelios Andreadis andreadisst@iti.gr

CERTH Ilias Gialampoukidis heliasgj@iti.gr

mailto:tdrivas@noa.gr
mailto:vsito@noa.gr
mailto:ipapoutsis@noa.gr
mailto:dfilippas@noa.gr
mailto:cmageiridis@protonmail.com
mailto:chroussakis@noa.gr
mailto:ftsamis@noa.gr
mailto:petteri.karsisto@fmi.fi
mailto:andreadisst@iti.gr
mailto:heliasgj@iti.gr

D3.1 – V1

 Page 4

Executive Summary

This deliverable presents the work done under WP3 in EO and non-EO data acquisition
as part of the Task 3.1 on Earth Observation (EO) data acquisition from the
Collaborative Ground Segment and quality control. It also provides brief descriptions
on the work done or to be done in deliverables D3.2 and D3.3 on Meteorological and
Climatological data acquisition and EOPEN Social Media crawlers respectively [Note
that the most recent update about Meteorological data and Climatological data
acquisition, at the time of submitting this document, is presented in D3.3]. The
document has been updated so to provide a detailed analysis of the most important
Sentinel data sources regarding their characteristics. This analysis is presented in
Chapter 2. In addition, APPENDIX C – NEXTGEOSS “Sentinel Linker Service” VS EOPEN
“Umbrella Hub Application”has been added in order to provide all the necessary
answers to the 2nd review comments regarding the Umbrella Hub Application and the
NextGEOSS alternative application, the Sentinel Linker Service.

It should be mentioned that the title of the deliverable, as introduced in the proposal
phase, might be misleading, as the scope of the task was extended. The acquisition of
EO data does not strictly come from the Hellenic National Sentinel Data Mirror Site,
but rather from multiple Sentinel Data Hub Access points, also including the
Copernicus Open Access Hub, the Finnish Mirror Site, and Sentinel-5P Pre-Operations
Data Hub. The aforementioned hubs were selected for the demonstration of the
developed EOPEN Umbrella Hub that functions as single point of access to data from
all available Sentinel missions: Sentinel 1, Sentinel 2, Sentinel 3 and Sentinel 5p, as
shown in Figure 1 below.

Figure 1. Umbrella application of Sentinels Data Hub Access points.

There are several Copernicus Hubs out there to access Sentinel data

o Core Hubs

D3.1 – V1

 Page 5

✓ Open Access Hub (formerly SciHub)

✓ 4 DIAS Hubs

✓ ApiHub

✓ S3 PreOps Hub

✓ S5P PreOps Hub

o 23 National Collaborative Ground Segments. Indicatively:

✓ HNSDMS (Greece, https://sentinels.space.noa.gr/)

✓ CODE-DE (Germany, https://code-de.org/)

✓ FinHub (Finland,
http://nsdc.fmi.fi/services/service_finhub_overview)

✓ Peps (France,https://peps.cnes.fr/rocket/)

Ten hubs of different characteristics are currently chosen to be exhibited as a proof of
concept for this 2nd delivery. Nonetheless, the overall design of the proposed
application was made to be linearly scalable with an increasing number of connected
hubs. This will be thoroughly demonstrated in the document.

https://sentinels.space.noa.gr/
https://code-de.org/
http://nsdc.fmi.fi/services/service_finhub_overview
https://peps.cnes.fr/rocket/
https://peps.cnes.fr/rocket/
https://peps.cnes.fr/rocket/
https://peps.cnes.fr/rocket/

D3.1 – V1

 Page 6

Abbreviations and Acronyms

API Application Programmable Interface

CERTH The Centre for Research & Technology, Hellas

DBMS Database Management System

DHUS Data Hub System

DIAS Copernicus Data and Information Access Services

EO Earth Observation

FINHUB Finnish Data Hub

FMI Finnish Meteorological Institute

GDAL Geospatial Data Abstraction Library

HNSDMS Hellenic National Sentinel Data Mirror Site

HTTPS Hyper Text Transfer Protocol Secure

JSON JavaScript Object Notation

MVC Model View Controller

NOA National Observatory of Athens

NUMPY Numerical Python

ORM Object-relational Mapping

PRE-OPS Pre-Operations

REST Representational State Transfer

SCIHUB Scientific Data Hub

SQL Structured Query Language

URL Uniform Resource Locator

XML Extensible Markup Language

YAML Yet Another Markup Language

https://www.certh.gr/root.en.aspx

D3.1 – V1

 Page 7

Table of Contents

1. MOTIVATION AND RELEVANCE ... 9

2. ANALYSIS AND SELECTION OF DATA SOURCES .. 11

2.1. Open Access Hub ... 11

2.2. Sentinels Collaborative Ground Segments .. 12

2.3. Data and Information Access Services (DIAS) Projects 20

2.4. Data hub selection ... 25

3. ARCHITECTURE ... 28

3.1. System Architecture ... 28

4. TECHNOLOGIES .. 29

4.1. Application Layer ... 30

4.2. Database Layer ... 31

5. IMPLEMENTATION ... 32

5.1. Database Design... 33

5.2. Django Applications ... 34

6. INTEGRATION WITH THE PLATFORM ... 38

6.1. Services .. 39

6.2. Processes .. 39

7. USER GUIDE ... 41

8. CONCLUSIONS .. 43

9. REFERENCES ... 44

10. APPENDIX A – Umbrella Hub API query parameters .. 45

11. APPENDIX B – Work done in other tasks .. 46

11.1. Meteorological and climatological data acquisition 46

D3.1 – V1

 Page 8

11.2. Social Media Crawling .. 48

12. APPENDIX C – NEXTGEOSS “Sentinel Linker Service” VS EOPEN “Umbrella Hub
Application” .. 51

12.1. Sentinel Linker Service Solution ... 51

12.2. Umbrella Hub Application. ... 51

12.3. Differences between Sentinel Linker Service and Umbrella Hub
Application ... 52

12.4. Use case description – Introducing the aim of applications 57

12.5. Why not use a DIAS platform ... 58

12.6. Conclusions .. 58

D3.1 – V1

 Page 9

1. MOTIVATION AND RELEVANCE

Searching for Sentinel data is often a complicated process due to the different
missions available and the different hubs that host data, but also the different
performances of the hubs in terms of download speed and latency (at both the inter
and intra level). Thus, there is the need for an Umbrella data hub that brings them all
together. We have developed such a single data access point, which is already
successfully deployed and accessible on the EOPEN platform. This way, we offer to the
users of EOPEN platform uniform access to Sentinel 1, Sentinel 2, Sentinel 3, and
Sentinel 5p metadata via connecting in the back end to a number of the available
Sentinel hubs and serving the results via an Application Programming Interface (API).

Most of these data hubs are using data hub system (DHuS1) that allows users to access
the data via their own computer programs, scripts or client applications. API Query is
based on OpenSearch protocol, which is a collection of technologies that allow
publishing of search results in a format suitable for syndication and aggregation.
Ultimately, this application gives the potential for

• linking federated Copernicus Sentinels Hubs to a single data hub, instead of
searching for the appropriate one for the user’s needs;

• accessing to all Sentinel mission data and better performance on downloading
products, as products are chosen from the most appropriate data hub based
on integrity, speed and availability tests.

Users occasionally visit more than one hub to discover and select the required
products due to several reasons. First of all, there is no availability of all Sentinel
missions in every hub. For example, there is only one hub that offers Sentinel-5p
products. Furthermore, there is no global coverage for most of the hubs; for instance,
the Hellenic National Sentinel Data Mirror Site (HNSDMS) provides data for
southeastern Europe, Middle East and North Africa. The next problem to tackle is the
data rolling policy. Sentinel Products are kept in each hub’s repository for a specific
amount of time and are deleted afterwards. The hubs keep only the products ingested
on the last N days, where N is a number of days determined by the hub’s policy. For
example, HNSDMS has set the retention period of the products to 30 days. In addition,
occasionally users come up against certain performance issues such as slow response
times and download speeds. Figure 2 reveals these differences by download time not
among the different hubs (inter level), but also concerning the average, the maximum
and minimum download speed within the same hub (intra level). For example, Figure
2 shows a great variability in Copernicus Open Access Hub, which is represented by
abrupt inner changes from high to low download speed and vice versa . We can see

1 https://sentineldatahub.github.io/DataHubSystem/

D3.1 – V1

 Page 10

that in the month of January there is an average of high speeds above 200 Mbps, while
in the month of February we see an average of high speeds below 100 Mbps. The
product will be downloaded from currently most efficient hub. This is to show that
the aforementioned issues have been documented and their adverse impact has been
quantified. This is based on a key measurement evaluation on multiple Sentinel hubs,
as performed by the DevOps team of NOA that operates HNSDMS, S5P PreOps Hub,
Sentinels International Access Hub, Collaborative Hub Node 3, and DIAS Hub Node 3.

Figure 2. Maximum, average, and minimum download speeds for SciHub and

HNSDMS.

D3.1 – V1

 Page 11

Another limitation is the data availability in the different hubs; firstly because not all
Sentinel missions and their data are available in each hub and secondly data must be
put under maintenance mode on specific time intervals. Thus, products coming from
these hubs are not available for several hours or days. Even worse, there might be a
timeout or a server error causing access problems.

Taking into consideration all the above, the need a single point of access to Sentinel
data is manifold. The application proposed in this document connects to the APIs of
the available hubs, searches and stores new metadata and chooses the most
appropriate source from which a requested product will be downloaded in the most
efficient way. The advantages of linking these sources together are recorded below:

• Access to a single hub instead of looking across several Sentinel Hubs to find
the appropriate products.

• Access to all Sentinel mission data

• No geographic restrictions

• Better performance/download variability by exploiting Hub diversity

• No delay due to maintenance of a hub

As a proof of concept, metadata from ten hubs are ingested; showcasing the
innovations of the Umbrella hub, including its modular architecture that allows for the
connection of hubs with diverse architectures.

2. ANALYSIS AND SELECTION OF DATA SOURCES

The growing demand of Sentinel data results in the creation of several data hubs.
These dedicated data hubs are based on different architectures and address different
user needs. For example, there are data hubs that provide access to both online and
archived data , whereas other hubs do keep a catalogue of the most recent data.
Access to data is free and users can self-register to the data hubs in order to gain
access. Data hubs provide either a web Graphical User Interface (GUI) to allow
interactive data discovery and download or open APIs allowing automated access to
the catalogues. An analysis has been performed to several data hubs so to identify
information regarding the offered Sentinel missions, the geographic coverage, the
rolling policy and statistics. The analysed hubs are presented below.

2.1. Open Access Hub

The Copernicus Open Access Hub2 (known as Sentinels Scientific Data Hub) provides
complete, free and open access to Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-

2 https://scihub.copernicus.eu/

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://scihub.copernicus.eu/

D3.1 – V1

 Page 12

5P data (via Sentinel-5P Pre-Operations Data Hub) . Open Access Hub manages data
via DHUS and makes it available via an interactive graphical user interface as shown
in Figure 3 or two dedicated APIs, ODATA and OpenSearch, for browsing and accessing
the EO data. An automatic and immediate self-registration process is required in order
to access and download the data (maximum of 2 concurrent downloads per user).
Data are kept online according to a rolling policy based on sensing date. Specifically,
Non-Time-Critical (NTC) products of all missions have a retention period of 12 months,
except from Sentinel-2 L2A (18 months). Additionally, NTC products are moved from
the online storage to the long term archive after a certain time period determined by
each hub’s policy and marked as offline. This kind of data can be requested from users
and be restored for a limited amount of time. At the time of writing, 338,150 users are
registered, 251.57 PB of data is downloaded, and 28,058,073 products are published
with a daily publication rate of over 30,500 products/day since the start of operations.
Finally, Open Access Hub had 98.3% availability for May 2020.

Figure 3. Open Access Hub Interface

2.2. Sentinels Collaborative Ground Segments

The Sentinel Collaborative Ground Segments, offered by EU Member States and
International partners enhances the access to Sentinel data. In the framework of the
Sentinels Collaborative Ground Segment, National Mirror sites are set up by partner
countries. As mentioned before, most of these data hubs are using Data Hub Open
Source software and specifically the new version 2.0.0, released in March 2019. This
latest version offers an extreme reduction in query times along with improved relay
performance.

2.2.1. Austrian Collaborative Ground Segment

The Austrian Collaborative Ground Segment3 includes the Sentinel National Mirror
Austria (Figure 4) and a Data Hub Relay (DHR) operated by ZAMG. The National Mirror

3 https://sentinel.zamg.ac.at/

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://sentinel.zamg.ac.at/

D3.1 – V1

 Page 13

provides access to Sentinel-1, 2 and 3 missions. Products are offered globally with a
sliding window of 35 days. During the last years, this hub managed to duplicate its
computational capacity with each Sentinel mission run on a dedicated virtual machine,
while it has been upgraded to the new version of DHuS. In addition, Austrian National
Mirror served, in 2019, 300 TB of products to 1600 users.

Figure 4. Austrian National Mirror Interface

2.2.2. Czech Collaborative Ground Segment

The Czech CollGS4 is managed by the Ministry of Transport and developed and
operated by CESNET. A National Mirror (Figure 5) has been available since late 2016
and a Data Hub Relay since spring 2018. During 2019, there have been 163 registered
users, 67 of them active, mostly Czech users and a few notable international. ODATA
queries reached 1.3 million, whereas 201,850 products have been served, mostly used
in Land and Agriculture services. At the same time, DHR feeds the National Mirror
using a DHUS back-end instance separately for each satellite. At the moment, and for
the foreseeable future, there is not any rolling policy on the dataset, which covers the
Czech Republic and surrounding regions, trying to maintain a full archive of Sentinel
products for the national area.

4 https://www.cesnet.cz/

https://www.cesnet.cz/

D3.1 – V1

 Page 14

Figure 5. Czech National Mirror Interface

2.2.3. French Collaborative Ground Segment

The Sentinel Product Exploitation Platform (PEPS)5 is developed and operated by
CNES. It was launched in September 2015 and counts already 5500 registered users
(56% French users). PEPS comes with a different architecture as it uses the rocket
interface (Figure 6) and resto as the metadata catalogue for geospatial data. The main
functionalities of PEPS are the mirror site of Sentinel-1 and Sentinel-2 products
(Sentinel-3 download functionality terminated in 2019 due to limited interest),
processing tools and access to high performance resources with user support. PEPS
provides access to global coverage and full archive. The amount of daily acquisition is
approximately 10 TB, whereas the total number of products at the time of writing is
21,074,087. Among other metrics, the number of registered users is stably increasing,
while the interest for Sentinel-1 and Sentinel-2 is balanced. Finally, PEPS has a rolling
policy of 30 days, as the most recent products go on disk and after this period the
storage mode turns to tape.

5https://peps.cnes.fr/rocket/

https://peps.cnes.fr/rocket/

D3.1 – V1

 Page 15

Figure 6. PEPS Interface

2.2.4. CODE-DE

The CODE-DE data and exploitation platform6 has been in operational mode since
March 2017, supporting data access and on-demand processing. CODE-DE provides
Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5p products. Sentinel-1 and 2 products
are stored on a global-scale for ten days, on a European-scale for 20 days and over
Germany for the entire period. On the contrary, Sentinel-3 and 5P products are stored
globally for 1 month and 1 year for Europe. EO Finder tool (Figure 7) provides
visualized access to this data, along with automated search, processing and
downloading via an API.

6 https://code-de.org/

https://code-de.org/

D3.1 – V1

 Page 16

Figure 7. EO Finder Interface

2.2.5. Hellenic Sentinel Data Hub

The Hellenic Sentinel data mirror site7 (Figure 8) synchronizes products from the
ColHub Node 3 for a specific area of interest, covering the Mediterranean, Black Sea
and surrounding lands. Sentinel-1, Sentinel-2 and Sentinel-3 missions are available
with a 25-day rolling archive using a 44TiB NAS storage. No deletion list of products is
provided. In addition, most of the approximately 700 registered users are from Greece
but also a number of mostly European countries. The main usage of the downloaded
products is atmospheric and land applications.

Figure 8. Hellenic Mirror Site Interface

7 https://sentinels.space.noa.gr/

https://sentinels.space.noa.gr/

D3.1 – V1

 Page 17

2.2.6. Finnish Mirror Site

The Finnish Collaborative Ground Segment8 comprises of the National Mirror site
(Figure 9), a local reception station for Sentinel-1 Direct Broadcast and data processing
services. It has been open to the public since May 2015, by providing access to
Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P in the area that covers mainly Baltic
Sea Drainage basin utilizing DHUS. There is no rolling policy adapted, so it includes
products generated back in 2017. Moreover, it does not provide any deletion
catalogue. The total of the registered users is approximately 316 with an annual 60%
increase. The majority belongs to Finnish research institutes, but there are also
European and overseas users.

Figure 9. Finnish National Mirror Interface

2.2.7. IPSentinel

Portuguese infrastructure for storage and availability of images from Sentinel
satellites (IPSentinel)9 allows the access to open and free data for the Portuguese
area including the search and rescue responsibility area in the Atlantic using DHUS
(Figure 10). This data comes from Sentinel-1, 2 and 3 missions. Especially, Santa
Maria collaborative station collects Sentinel-1 data quickly, upgrading this station
to the first one from the national territory that acquires data which will only be
accessible afterwards from the ESA repository. Finally, IPSentinel keeps the last 60
days of archive available in the aforementioned missions.

8 https://nsdc.fmi.fi/

9 http://ipsentinel.ipma.pt/

https://nsdc.fmi.fi/
http://ipsentinel.ipma.pt/

D3.1 – V1

 Page 18

Figure 10. IPSentinel Interface

2.2.8. Norway Collaborative Ground Segment

The Norwegian Collaborative Ground Segment10 offers two portals for the data
distribution: colhub.met.no (Figure 11) and satellittdata.no.DHUS Approximately 430
registered users have been granted access to Sentinel-1, Sentinel-2 and Sentinel-3
data, totally 11.5 million products. Sentinel-5p products are available only in back end
and will be available when system will be upgraded to DHUS v2. Note here that the
Norwegian hub is not and will not mirror the open access hub. Thus, there are
products in it that do not exist in the open access hub and vice versa. Currently, all
data in Norwegian hub are online.

10 https://satellittdata.no/

https://satellittdata.no/

D3.1 – V1

 Page 19

Figure 11. Norwegian hub Interface

2.2.9. Romanian Collaborative Ground Segment

The Romanian mirror site11 was created and is maintained by the Romanian Space
Agency, known as ROSA (Figure 12) , provides Sentinel data from all missions for one
month. The current area of interest is Romania and eventually will be extended to the
entire Danube territory and Black Sea basin. The national mirror of Romania
considered to be a central point of access for several organizations, such as Meteo
Romania. DHUS is also used by this mirror for the dissemination of Sentinel data.

Figure 12. ROSA Interface

11 http://www2.rosa.ro/index.php/en/

http://www2.rosa.ro/index.php/en/

D3.1 – V1

 Page 20

2.2.10. UK Collaborative Ground Segment

The current UK CollGS comprises two parts: the first one is SeDAS12 (Figure 13),
operated by Catapult and serving commercial users and the other one is JASMIN,
operated by STFC-RAL and providing academic data access. Specifically, SeDAS stores
Sentinel-1 and Sentinel-2 globally data. Data are maintained for a minimum of one
year rolling archive. The latest official statistics revealed 670 registered users from
more than 65 countries. A dedicated API has been built to allow automatic data search
and download. Moving to JASMIN super data cluster, it stores approximately 5 PB of
data from all Sentinel missions, with more than 590 registered users.

Figure 13. SeDAS Interface

2.3. Data and Information Access Services (DIAS) Projects

The Copernicus Big Data approach consists in Data and Information Access Services
(DIAS). DIASs are five cloud-based platforms that provide a single access point to
Sentinel data, along with pertinent processing tools. DIASs, additionally, provide
access to the information products generated by Copernicus’ six operational services.
It is noteworthy that there is no reason for the Umbrella hub to be set up on one of
the DIASs. The Umbrella hub can be deployed in any infrastructure bringing together
live metadata from a number of different hubs and to provide the most efficient hub
to download a certain product at a particular instance. EOPEN’s scope is to serve these
metadata to any user globally and not only to the DIAS users. However, the Umbrella
hub is able to enhance the DIAS hubs by connecting to one or more of them and get
metrics in order to provide metadata also from there.

12 https://sedas.satapps.org/

https://sedas.satapps.org/

D3.1 – V1

 Page 21

2.3.1. ONDA-DIAS

ONDA DIAS13 is the Serco's cloud-based platform for accessing geospatial data. OVH,
GAEL and Sinergise are the partners of this project. ONDA stores more than 34 million
products. It provides free and open access to all Sentinel missions with more than
2104registered users at the time of writing according to public dashboard of ONDA.
Access to data is achieved either via a Catalogue Graphical User Interface as depicted
in Figure 14 that allows filtered queries or via two APIs: OData Protocol and Advanced,
Linux-based, API (Elastic Node Server). Sentinel-1 (except for SLC products over
Europe), Sentinel-2 and Sentinel-3 with sensing date older than three months are
archived. Beyond data access, ONDA brings in open source software tools for data
processing (e.g. SNAP) in preconfigured virtual environments and the possibility for
addition of custom features and dedicated services to the virtual servers.

Figure 14. ONDA Dias Catalogue Interface

2.3.2. Creodias

Creodias14 cloud platform combines big EO Data storage with EO processing tools. The
platform contains partial repository of Sentinel-1 and full repositories of Sentinel-2, 3
and 5-P, Envisat and Landsat-5, 7, 8 data. Approximately 15 PB of data are stored.
CREODIAS provides the EO Browser (Figure 15), a browser that enhances visualisation
of chosen Earth Observation images. It also provides Finder Tool which acts as an
advanced search engine allowing queries based on certain parameters. EO Finder uses
resto but requests are limited to 60 per minute per source IP address.

13 https://www.onda-dias.eu/cms/

14 https://creodias.eu/

https://www.onda-dias.eu/cms/
https://creodias.eu/

D3.1 – V1

 Page 22

Figure 15. Creodias EOBrowser Interface

2.3.3. Mundi

Mundi15 has been developed by a fresh consortium, composed of DLR, e-Geos, EOX,
GAF, Sinergise, Spacemetric, Thales Alenia Space and T-Systems, with the leadership
of Atos. Mundi provides access to a large range of satellite data and information
provided by the Copernicus services and in the same time it offers tools and utilities
for advanced processing. Regarding Sentinel data, a rolling policy of 12 months for
World is applied to Sentinel-1 GRD and SLC products and 24/48 months for Europe
respectively. Moving to Sentinel-2, L1C fresh data with global coverage are online for
the last 12 months. L2A data are online from July 2015 with Europe coverage only.
Sentinel-3 OLCI global data is provided from the beginning of 2018. Finally, Sentinel-
5P L1B data can be discovered online from January 2019 with global coverage.

15 https://mundiwebservices.com/

https://mundiwebservices.com/

D3.1 – V1

 Page 23

Figure 16. Mundi Catalogue Interface

2.3.4. Sobloo

Sobloo16 was developed and is run by Airbus, Capgemini, Vito, and Orange. This cloud-
based platform provides access to different types of data such as Copernicus Data,
Mobile data, commercial imagery etc. In addition, a stack of features, including
processing EO data tools, high computational power, generic cloud managed services
and APIs is offered. Public dashboards serve statistics regarding number of items per
collection, IaaS performance and products’ volume, download speed and response
time of APIs. Last but not least, Sobloo offers data from all Sentinel missions globally,
storing currently more than 5 million of Sentinel-1 products, more than 19 million of
Sentinel-2 products, more than 4 million Sentinel-3 products and more than 0.3 million
of Sentinel-5p products.

16 https://sobloo.eu/

https://sobloo.eu/

D3.1 – V1

 Page 24

Figure 17. Sobloo Catalogue Interface

2.3.5. Wekeo

Wekeo17 is the result of the EUMETSAT, ECMWF and MERCATOR OCEAN collaboration.
The three data and infrastructure centres are linked together to a distributed
platform. Wekeo stores data from multiple Sentinel missions (Sentinel-1,2,3 and 5-p),
as wells as Copernicus services. A web portal (Figure 18) is offered for accessing the
catalogues along with a dedicated Rest-based API, the Harmonised Data Access API.

Figure 18. Wekeo Catalogue Interface

17 http://wekeo.eu/

http://wekeo.eu/

D3.1 – V1

 Page 25

2.4. Data hub selection

The Umbrella hub has the potential to connect to hubs’ and mirror sites’ APIs with any
architecture, DHUS or not, as long they satisfy a number of criteria, as presented
below:

• Rolling policy knowledge. There is the need to know the rolling policy in order
to delete any product that is no longer available. Alternatively, a Deletion
catalogue must be provided so that Umbrella can look into it and identify the
products that are no longer online.

• Specific search parameters in API. Candidate hub’s API must allow queries
based on date. The reason lies in the architecture of Umbrella that requires the
harvest of products to start from the previous search date time to the current
timestamp. Another useful parameter is a parameter that separates online and
offline products (usually called online or offline).

• Download capability. A critical module of the Umbrella hub is the scoring
process. This process is mainly based on downloading a part of the product and
measure the download speed. Thus, the candidate API has to provide free
download of the products. By analyzing the characteristics of the hubs, eleven
hubs have been gradually selected to be connected to the Umbrella hub. These
hubs are either DHUS based or based on another architecture. One of them,
IPSentinel, is set to non-active as there is a problem on certification verification
during the metadata request, so, finally, ten of them are connected and
presented in Table 1.

Table 1. The characteristics of connected hubs

Data
Source

Archive
Policy

Deletion
Policy

Missions Performance
Geographic
Coverage

Selection
Reasons

Copernicus
Open

Access Hub

Products
from

January
2018 (online
archive of at

least the
latest year

of products)

Corrupted
and

duplicate
products

are deleted
every 24

hours

Sentinel-1

Sentinel-2

Sentinel-3

Slow response
and variant
download

speed

Global

Global coverage,
three missions, long
time availability of

online products,
many registered

users

Hellenic
National
Sentinel

Data Mirror
Site.

Products
online from
last 25 days

No deletion
list

Sentinel-1

Sentinel-2

Sentinel-3

Very fast
response and

high download
speed

South & South-
eastern Europe,
Middle East &
North Africa

Fast API Response,
three missions.

simple to connect

Finnish
Mirror Site

Products
online from

February
2017

No deletion
list

Sentinel-1

Sentinel-2

Sentinel-3

Fast response
and high

download
speed

Sentinel-1,2:
Scandinavia and

Baltic areas,
Shaksgam valley,

Kyagar glacier lake,
Kirgisia, Tazdikistan,

Iceland strait,

Products online
from 2017, three

missions, simple to
connect

D3.1 – V1

 Page 26

Bolshevik island,
Tiksi

Seninel-3: SLSTR
Northern

hemisphere

Sentinel 5P
Pre-Ops

Hub

Products
online from
April 2018

 Sentinel-5

Fast response
and high

download
speed

Global
Primary source of

S5p

Austrian
Mirror Site

Products
online from
last 35 days

Deleted
Products
collection

Sentinel-1

Sentinel-2

Sentinel-3

Slow response
and high

download
speed

Global

Updated to DHUS
v2, global coverage,

many registered
users, simple to

connect

Czech
Mirror Site

No rolling
policy

Deleted
Products
collection

Sentinel-1

Sentinel-2

Sentinel-3

Very fast
response

Czech Republic and
surrounding regions

Updated to DHUS
v2 with an external
database, no rolling

policy, very quick
API response,

simple to connect

PEPS
Products

online from
last 30 days

Sentinel-1

Sentinel-2

Fast response
and high

download
speed

Global
Non-DHUS, resto

API, global coverage

D3.1 – V1

 Page 27

The aforementioned connected hubs can be categorized into two groups: the hubs
that use DHUS combined with a dedicated ODATA and OpenSearch API and the hubs
that use another API format (such as resto). OData (Open Data Protocol) is a standard,
allowing the definition of rules, conventions and formats for handling data online via
Hypertext Transfer Protocol (HTTP/HTTPS) requests, the constructing of URIs for data
identification and the usage of reserved URI query string operators. In order to gain
access to the API, full authentication is required. ODATA uses an URI based on three
parts (Figure 19):

• the Service Root URI identifies the root of the OData service;

• the Resource Path defines the collection entity to look into (e.g.
DeletedProducts);

• the Query Options used to filter the results.

Norway
Collaborativ

e Ground
Segment

Currently,
no rolling

policy

Deleted
Products
collection

Sentinel-1

Sentinel-2

Sentinel-3

Fast response
and high

download
speed

Global

Does not mirror
Open Access Hub,
therefore provide
access to products

that cannot be
found in Open
Access Hub, no

rolling policy, global
coverage, three

missions

Romanian
Mirror Site

Products
online from
last 30 days

Deleted
Products
collection

Sentinel-1

Sentinel-2

Sentinel-3

Fast response
and high

download
speed

Romania
Fast API Response,

three missions.
simple to connect

Ondadias

Products
online from
last 90 days,
except from
Sentinel-1
SLC products
over Europe

Sentinel-1

Sentinel-2

Sentinel-3

Very fast
response and

very high
download

speed

Global
Non-DHUS, global

coverage, three
Sentinel missions

D3.1 – V1

 Page 28

Figure 19. An example of an ODATA request

However, hubs using ODATA do not share the same format, parameters, entities or
query options. For example, the selection of products created from 1 January 2020
has different approaches in Open Access Hub and ONDA Dias as presented below:

• https://scihub.copernicus.eu/DHuS/odata/v1/Products?$filter=CreationDate
gt datetime '2020-01-01T00:00:00.000'

• https://catalogue.onda-dias.eu/dias-
catalogue/Products?$search=”creationDate:[2020-01-
01T00:00:00.000Z%20TO%20NOW]”

Regarding Rest, the other most used API, it is defined as a catalogue that aims at
handling not only Earth Observation satellite imagery, but also a kind of metadata.
Many projects have used resto, such as CREODIAS, PEPS, Remote Sensor Technology
Center of Japan (EPIC project) , Sentinel Australia Regional Access, Sinergise sentinel-
hub OpenSearch API etc. An example of resto request is the following:
https://peps.cnes.fr/resto/api/collections/S1/search.json?collection=S1&page=1

3. ARCHITECTURE

3.1. System Architecture

The goal of the system architecture is the design of a single point of access for Sentinel
metadata by searching and collecting them from all the available hubs, DHuS based or
not. The system overview depicts the various ways in which the developed Umbrella
hub functions and is accessible by the user. As shown in Figure 20 there are three main
processes that take place in order to eliminate the aforementioned limitations: i)
searching hubs for new metadata, ii) scoring hubs based on performance, and ii)
deleting unavailable metadata.

The searching process takes place multiple times per day, in particular every fifteen
minutes in order to harvest new metadata ingested in the hubs. Sentinel missions have
a revision time from one to five days, which implies that the different hubs are
populated with newly ingested products daily. Sentinel data are made available to the
hubs usually two to twelve hours post sensing. Thus, the update frequency of fifteen
minutes was chosen as an optimal so as to capture all these newly ingested metadata.
This frequent update of metadata is crucial for near real time applications that are
dependent on the immediate acquisition of the required data, one such application
could be the flood extent mapping (PUC1 Product). Moreover, the more frequent the
searching process is the shorter the execution time; with the process being dependent

https://scihub.copernicus.eu/dhus/odata/v1/Products?$filter=CreationDate%20gt%20datetime%20'2020-01-01T00:00:00.000'
https://scihub.copernicus.eu/dhus/odata/v1/Products?$filter=CreationDate%20gt%20datetime%20'2020-01-01T00:00:00.000'
https://catalogue.onda-dias.eu/dias-catalogue/Products?$search=
https://catalogue.onda-dias.eu/dias-catalogue/Products?$search=
https://catalogue.onda-dias.eu/dias-catalogue/Products?$search=
https://peps.cnes.fr/resto/api/collections/S1/search.json?collection=S1&page=1

D3.1 – V1

 Page 29

on the number of products to be harvested. The process is thoroughly described in
section 5.2.1.

In addition, metadata are deleted due to several reasons, including the respective
hub’s archive rolling policy. Thus, the system will clear all the records that do not
longer exist at the hubs.

Moreover, the scoring process identifies the most efficient hub at a particular
instance. The process is executed every ten minutes and it checks the availability of
each hub and measures the download speed for the same type of products in order
to rank the hubs. As there is a time variability concerning the download speed of
certain hubs, such as the Copernicus Open Access Hub, the scoring frequency of ten
minutes allows for the frequent status of each hub. This leads to the optimal selection
for the most efficient hub. Having a short time scoring frequency ensures that the last
measured download speed is indeed representative of the current download speed.
Consequently, when a user asks for a product, they get metadata from the most
appropriate - at this time - hub.

Figure 20. System Architecture.

Finally, as shown in Figure 20, the system provides via an API the collected Sentinel
metadata by allowing users to perform requests on the database resources and get
the download link for the required products.

4. TECHNOLOGIES

The proposed design consists of two layers: the database layer and the application
layer. In order to implement these layers, a thorough evaluation was performed by
reviewing best practices and by taking into accounted potential architectures. Thus,

D3.1 – V1

 Page 30

the choice of the employed technologies was based on the best combinations and
trade-offs among efficiency, reusability, and suitability.

4.1. Application Layer

As Figure 21 reveals, the application layer interacts not only with the hubs by sending
requests and handling responses easily, but also with the users accepting requests and
serving metadata. At the same time, the source code of the application layer had to
be written in a language that is able to handle multi-dimensional containers of generic
data.

Figure 21. Overall system architecture.

Taking into consideration all the above, Django18 was selected. Django is an open
source web framework for Python. It provides a high-level abstraction of common web
development patterns (Holovaty and Kaplan-Moss, 2009). Django comes fully loaded
with libraries related to user authentication, site maps, et cetera. These functionalities
help to automate any process without specifically writing new code.

18 https://www.djangoproject.com/

https://www.djangoproject.com/

D3.1 – V1

 Page 31

Moreover, Django provides the GeoDjango19 module, which is essential in EOPEN, as
it provides geospatial functionalities. For instance, our metadata include a field related
to their footprint. This field must be added to the database as a geometry, which can
easily done by using the GeoDjango tools.

Finally, Django REST framework20 was selected for the Umbrella API.
Representational State Transfer (REST) is an architectural model that is used to design
distributed software architectures based on network communication. Responses of
the selected API type have to be in eXtensible Markup Language (XML), JavaScript
Object Notation (JSON), Yet Another Markup Language (YAML), or any other format
depending on what the client requests. Moreover, it has to be stateless, meaning that
requests can be made independently of one another, and each request contains all of
the required data to complete itself successfully. The Django REST framework is
powerful and flexible for building Web APIs, allowing filtering and easy data
serialization.

4.2. Database Layer

Figure 21 illustrates the database layer that is used for storing the harvested
metadata. This layer demands a database management system (DBMS) that performs
well in complex queries on a great number of records. In addition, database
management systems must support geographic objects so it can be used as a
geospatial data store for location-based services and geographic information systems.

PostgreSQL21 is an open source relational database management system, which has
proven very reliable in use (Obe and Hsu, 2011, Stones and Matthew, 2006). As
PostgreSQL is free to use with no licensing costs, it allows for the scalability of the
database size. In addition, GeoDjango is fully compatible with PostgreSQL, also
supporting JSON type.

PostGIS22 is a spatial database extender for PostgreSQL object-relational database.
Geographic objects are added allowing location queries to be run in SQL. PostGIS adds
extra types (geometry, geography, raster and others) to the PostgreSQL database.
Functions, operators, and index enhancements that apply to these spatial types can
also be added (Obe and Hsu, 2011). These extra functions, operators, index bindings
and types empower the core PostgreSQL DBMS, upgrading it into a fast and robust
spatial database management system.

19 https://docs.djangoproject.com/en/2.2/ref/contrib/gis/

20 https://www.django-rest-framework.org/

21 https://www.postgresql.org/

22 https://postgis.net/

https://docs.djangoproject.com/en/2.2/ref/contrib/gis/
https://www.django-rest-framework.org/
https://www.postgresql.org/
https://postgis.net/

D3.1 – V1

 Page 32

Concerning the interaction among the databases, Django Models API allows a simple
way of creating and interacting with them. Most common databases are programmed
with some form of Structured Query Language (SQL), however each database
implements SQL in its own way. Django Models API provides an Object-relational
Mapping (ORM) to the underlying database. ORM is a powerful programming
technique that simplifies tasks related to data and relational databases. In Django, the
model is the object that is mapped to the database. At the time a model is created,
Django executes SQL for the creation of the corresponding table in the database while
there is no need for the user to write any SQL code. Django prefixes the table name
with the name of the Django application. In addition, the model links related
information in the database.

Figure 22. Django Model to Database table.

5. IMPLEMENTATION

The implementation of the Umbrella hub can be split into two different modules: the
database module (IDLE mode) and the application module (user request mode).

As this Umbrella hub saves metadata from the aforementioned hubs, there is the need
for a database system. The database stores not only information about the metadata,
but also information about the hubs. Metadata information is the same with the one
on the source hubs, e.g. polarization for Sentinel-1 or cloud coverage for Sentinel-2.
Moreover, the database is populated with new data so that users have access to newly
ingested metadata as fast as possible. Thus, a searching application is executed every
fifteen minutes. At the same time, hubs delete their data due to either their rolling
archive policy or due to several other reasons, such as duplicate, corrupted products
etc.. The Umbrella hub has to update the metadata in the database by deleting them
when they are deleted from the hubs. Therefore, the delete process takes place once
per day to prevent users from attempting to download a product that is no longer
available.

The greatest advantage of this Umbrella hub is that it provides users the download
link from the most appropriate hub for the requested product. This is achieved by a
scoring process which runs every ten minutes and checks the availability of the hubs.

D3.1 – V1

 Page 33

If the hub is available, it also measures its download speed of online products. Offline
products can be requested, but cannot be checked immediately for performance as
they become available at a later stage. Hubs get points based on their availability
status and download speed. The total score of each hub is stored in the database.
Thus, when users make a request to the Umbrella hub API, they get as a response the
metadata that stem from the hub with the highest score and in which the products
are available. In this way, users take advantage of the best combination of the
product-hub pair. At the next sections there is further elaboration on these two
modules.

An alternative approach would be the scores of the hubs to be computed every time
a user makes a request. But this would add additional time to respond to the user
request, as the scoring process needs several seconds to execute. In addition, as
multiple users may make requests at the same time, there is the need for storing
multiple users’ credentials in the database. This requirement is related to the fact that
only one authenticated request is allowed per session.

5.1. Database Design

Once the hubs and metadata were analysed, the next step was to design the database.
A smartly designed database structure is able to improve the efficiency of data storing,
to ensure the data integrity, and consistency. As Figure 23 illustrates, metadata are
divided into four different tables corresponding to the four Sentinel missions, for
which the searching process identifies metadata. Each mission table lists the different
attributes associated with the respective sensors. Hence, the metadata are organized
in a logical manner, similar to the way in which the real-world objects that the data
represent are organized. In addition, the API becomes more user friendly as users can
access each mission as a separate catalogue.

In the scenario that more hubs connect to the Umbrella API, there is no need for time
consuming parameterization of the source code, as new information related to these
hubs are easily inserted to the database via an administrator form allowing simple and
fast integration.

The great amount of metadata that is ingested daily by adding more hubs has been
taken into consideration during this design. As most hubs keep products that have
been sensed within a specific period of time (i.e. HNSDMS keeps records of products
sensed in the past month) and delete older ones, we have developed a delete process
to make sure that our database is up to date. In the case of Copernicus Open Access
hub, the archive of available products is very long, however it keeps a list of deleted

D3.1 – V1

 Page 34

products, allowing the Umbrella hub to easily delete the appropriate products,
without having to go through its entire archive. See more details on section 5.2.1.

Figure 23. Database Diagram.

5.2. Django Applications

Currently users can access one of the many hubs where the requested product does
not exist, either because it has been deleted or because it has never been ingested
due to geographic restrictions. In addition, users are facing problems related to
download speed as they are hubs, such as Copernicus Open Access Hub, from which
the products are being downloaded with low rate.

5.2.1. IDLE Mode Application

The search process gets metadata from all aforementioned APIs and gathers them
together in a single database. The search process executes parallel tasks and each of
them searches for the newly ingested metadata in each connected hub, starting from
the previous searched date time up to the current date time. Taking advantage of this
parallelization the search process is straightforwardly scalable, assuming the existence

D3.1 – V1

 Page 35

of the required sources. In order to access the different hubs, authentication is
required. Thus, credentials are stored to the database and are retrieved when needed.
These credentials are set up by the developers in order to have access to the hubs.
Users must set their credentials only for downloading the required products. For
example, if Umbrella hub identifies that Onda DIASis the most efficient hub for a
requested product in a particular instance, a download link to this product is provided
to the user. This link can be accessed if only user has been authorized to access the
aforementioned hub and all the hubs the Umbrella application is connected to.
Afterwards, a dedicated URL – query is constructed for requesting the required
metadata, coming from the selected Sentinel satellite, at a specific time range, in JSON
format.

Figure 24. Example of building a query String used in a request to Copernicus Open
Access Hub API

Triggering scripts send two requests - one to the whole product catalogue and one to
the dedicated URL (subset of the product catalogue). If there is a successful response
status from both of them, metadata are stored in a dictionary. Multiple requests to
the dedicated URL must be made due to pagination. The results do not appear in a
single page, but only a subset of them. For example, Copernicus Open Access Hub has
a pagination of 100 results per page. If the process is completed successfully,
metadata are stored into the database and along with the searching date time in order
to use this as the start date timestamp for the next search. It is noteworthy that
requests to non DHUS-based hubs’ APIs have a different format than the one that
depicted above. Therefore, an analysis of the structure, the searching and the filtering
parameters has been conducted on each of these hubs (Chapter 2).

The deletion process keeps the database updated on the currently available products.
The different hubs have a different deletion mechanism, and thus we had to identify
the products that have been deleted either due to the rolling archive policy or to other
reasons such as corrupted products etc. However, the deletion policy is different for
each hub. For instance the Copernicus Open Access hub has a catalogue of deleted
products that we use to update the database so as not to go through the entire
catalogue and hence save time. On the other hand there is no such catalogue for the
Greek mirror site, which archives products only for one month. Therefore in this case
we can use these products to compare them with our database and see if any of those
have been deleted. The final option is to delete products stored in the Umbrella hub’s
database after the retention period for each hub. The last process demands the exact
knowledge of the rolling policy. Taking into consideration the above, deletion process
is divided into three sub processes.

D3.1 – V1

 Page 36

The first one searches on every hub that provides a catalogue of deleted products. The
script makes a request to the API’s catalogue and gets all the deleted products.
Afterwards, a dataset is generated from the intersection between the stored products
in our database against the harvested deleted metadata. The resulted intersection set
determines the metadata that are going to be deleted from the database. It should be
noted that PEPS does not accept queries based on online status of the products
despite the fact that metadata does have this kind of attribute. Therefore, the
discrimination between online and offline products takes places after the retrieval of
the API response. Moreover, the second process looks into the hub’s product
catalogue and saves all metadata. Then, the set of harvested metadata is compared
to the set of the stored metadata in the database coming from the database. The
intersection of the two sets are kept in the database, whereas the non-common
metadata is deleted. . The third sub process checks whether metadata related to a
certain hub must be deleted from the local database based on the sensing date,
checking the slide window period of the hub.

This process is also straightforwardly scalable due to the fact that hubs are checked
for unavailable products in parallel.

The scoring process is crucial, as the download speed of the hubs is often low and
significantly fluctuating due to a series of reasons. Currently, users are not able to find
the appropriate hub that not only has the products they need but is also available and
with high download speed. The Umbrella hub gives the solution to such issues. Having
all the metadata in the local database gives the potential to provide products coming
from the most appropriate hub based on the availability and measured download
speed at the time of request. The scoring process is executed every ten minutes,
checking not only the status of the data hub but also the download speed. The chosen
time interval is based on the high variability of Copernicus Open Access hub download
speed (significant fluctuations from hour to hour), while the HNSDMS and the Finnish
Hub had nearly constant download speed during our tests.

To check the hub’s availability, a request is sent to the products catalogue of the API
for relevant products and size. If the response status code is related to an unsuccessful
request, then the hub’s score is zero. In case the response status code is listed as
successful, then a download test is queued by randomly selecting metadata of a
certain type of product from the postgresql database. The idea is to start the
download of the product from each source and count the downloaded bytes during a
fixed time interval of five seconds to measure the available bandwidth. Finally, each
of the N hubs is sorted based on its download speed; the hub with the highest
download speed scores N points, the one with the second highest download speed
scores N-1 points etc. The updated scores are stored in the postgresql database.
Having these scores the application easily provides users the best hub to download
from at a given time.

D3.1 – V1

 Page 37

Scalability can be achieved here in the following way: On each test, requests in hubs
are sent in parallel and hubs’ download speeds are stored in the database. Then, these
speeds are sorted and the most efficient hub can be selected.

5.2.2. API Application

Anyone who needs to search and download Sentinel data uses either the user
interface that each hub provides (DHuS), or an API in which he can send query
requests. These requests consist of parameters that identify the requested products,
such as the footprint, the mission etc. These APIs respond with lists containing
metadata of each requested product. At the next step, users can download the
products by getting the appropriate download links. The Umbrella API follows the
same process.

This application makes use of the results the IDLE mode application generates,
retrieving them from the database. The API application creates a REST API via Django
views module and allows users to make GET requests to it. In this request, the users
are able to define their parameters based on their needs. The Umbrella hub gives back
a result set that contains metadata from the most efficient source to download from.

As the user makes a request query, the application finds on the fly all the available
tuples {products, hub site} and serves the metadata from the highest scored source.
This application also gives the potential for spatial queries by using
django.contrib.gis.geos and rest_framework_gis libraries. Figure 25

depicts the process generated upon a user’s request.

D3.1 – V1

 Page 38

Figure 25. Activity Diagram for User Request.

Scenario: A user wants to get all Sentinel-2 products for the summer of 2019 over a
specific area of interest (bounding box). The request will be the following:

https://proto2.eopen.spaceapplications.com/eocatalogue/pr

oducts/sentinel2?in_bbox=20.8,38.41,23.82,40&sensing_date

__gte=2019-06-01&sensing_date__lte=2019-08-31&format=json

6. INTEGRATION WITH THE PLATFORM

After the application was locally tested, the next step was to integrate it within the
EOPEN platform. The platform gives the potential for other deployed applications to
exploit the Umbrella data hub. These applications can be either applications inside the
platform or any other application which provides metadata by requests to the API.
Concerning the integration, any application can be deployed either as a service or as
a process. Services run constantly without the need for a triggering mechanism, so as
to be accessible anytime from the users. On the contrary, processes contain one or
multiple scripts, which demand a triggering event to be executed.

D3.1 – V1

 Page 39

6.1. Services

Firstly, the database was set up with all ingested data coming from 2018 (for all
Sentinel missions) – it will be populated with all available data at a later stage. For the
import of the database into the platform, a backup file was required, containing the
structure of the database along with the relations among the database objects and
the records already stored in the tables. This file was then imported into the postgresql
server.

The next step was to push the Django project as a Docker image into a platform’s
repository so that it could be placed into a Docker container. A Docker container can
be seen as a computer inside another computer in order to avoid having problems
related to the transfer of projects from local to production. Among other assets,
Docker allows users to wrangle dependencies starting from the operating system up
to details such as Python package versions and ensures that user’s analyses are
reproducible.

Figure 26. Dockerfile used for creating the Docker image.

Finally, since the service has been initiated, any platform process has access to the
database and the API.

6.2. Processes

As mentioned, the Django project consists of three principal modules: searching,
deleting and scoring. These applications must stand as independent processes within
the platform, so that they run in different time intervals. In order to convert these
applications into processes, EOPEN Platform provides a process wrapper template
generator. This generator allows users to enter basic information about the process
related to name, description etc. The most important part is that the input and output
parameters are defined along with the required libraries.

D3.1 – V1

 Page 40

Figure 27. Process Wrapper Template Generator.

The Process Algorithm Importer of the platform automatically containerizes the
uploaded file and creates a process. All created processes are available to be added
into a processing chain, which is called processor. For example, as we need to search
at the same time tenhubs, our processor consists of the same process in tenreplicas
but with different input parameters, namely the hub IDs.

As the score, search and delete processes must be triggered in different time intervals,
ten minutes, fifteen minutes and twenty hours respectively, a scheduler must be set
up. A scheduler module within the platform gives the potential to set the time interval
in which each process is executed.

D3.1 – V1

 Page 41

Figure 28. Process Scheduler.

Recent executions section on the platform’s interface allows users to inspect the
status of each execution. Moreover, there are log files which show the errors, inputs
and outputs of each process.

Figure 29. Recent Executions.

7. USER GUIDE

This section guides users on how to interact with the Umbrella hub API. Users are able
to use this API in order to get metadata without any geographic restrictions based on
their needs and having the best possible performance for downloading the products.
The EOPEN Web API is based on REST principles (Massé, 2012). Data resources are
accessed via standard HTTPS requests in UTF-8 format to an API endpoint. The API
returns all response data as a JSON object.

The requests consist of the mission catalogue (Sentinel-1, Sentinel-2, Sentinel-3 and
Sentinel-5 catalogues) and the parameters used to query it.

D3.1 – V1

 Page 42

Figure 30. Catalogues of Umbrella hub API.

Users encounter these parameters in order to get the most relevant results related to
their needs. Each satellite comes with different parameters. However, certain
parameters are common. The general form of a request is
https://proto2.eopen.spaceapplications.com/eocatalogue/products/<mission>?&for
mat=json. For example, if the mission is Sentinel-1, the request has the form:
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?&for
mat=json

The Table 2 shows every parameter that can be used to build the query along with the
catalogue that can be applied to.

Table 2: Umbrella hub API request parameters.

 The distinct values some of these parameters can take along with the operators that
can be applied to them and examples of them are revealed on APPENDIX A –

Umbrella Hub API query parameters.

Finally, the endpoint supports a way of paging the dataset, taking an offset and limit
as query parameters:

https://proto2.eopen.spaceapplications.com/eocatalogue/pr

oducts/sentinel1?sensing_date__gte=2020-06-

 Sentinel-1 Sentinel-2 Sentinel-3 Sentinel-5

relative_orbit_number Yes Yes Yes Yes

sensing_date Yes Yes Yes Yes

product_type Yes Yes Yes Yes

in_bbox
(xmin,ymin,xmax,ymax)

Yes Yes Yes Yes

filename Yes Yes Yes Yes

cloud_coverage No Yes No No

polarization Yes No No No

https://proto2.eopen.spaceapplications.com/eocatalogue/products/%3cmission%3e?&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/%3cmission%3e?&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?sensing_date__gte=2020-06-01&in_bbox=20.8,38.41,23.82,40&limit=100&offset=200&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?sensing_date__gte=2020-06-01&in_bbox=20.8,38.41,23.82,40&limit=100&offset=200&format=json

D3.1 – V1

 Page 43

01&in_bbox=20.8,38.41,23.82,40&limit=100&offset=200&forma

t=json

In the example above offset means that starting from the 200th result and users
retrieve the next 100 (limit=100) results.

8. CONCLUSIONS

Open satellite data coming from Sentinel missions have opened the gates to newer
applications related to many scientific areas. These data can be found free on several
hubs with differences related to the available satellite missions and the geographic
coverage. In this deliverable, we have presented the first version of an Umbrella data
hub, which takes into consideration users’ demands for searching and downloading
satellite data. This application provides a more efficient service to gain access to
Sentinel data. The current situation related to searching Sentinel data is rather
complicated having many limitations set by the individual characteristics of the
different hubs, such as geographic coverage, deletion policy, mission availability,
download speed, hub availability etc. In this context we have presented the need and
the implementation of a single point of access. In addition, this version addressed the
comments of the 2nd review by presenting a detailed analysis of a significant number
of hubs and the selection criteria for the connected one. It is also made apparent that
Umbrella hub application brings a new era to the Sentinel access points as it provides
a more flexible architecture than the alternative Sentinel Linker Service by allowing
the connection of both DHuS based and non-DHuS based hubs.

https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?sensing_date__gte=2020-06-01&in_bbox=20.8,38.41,23.82,40&limit=100&offset=200&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel1?sensing_date__gte=2020-06-01&in_bbox=20.8,38.41,23.82,40&limit=100&offset=200&format=json

D3.1 – V1

 Page 44

9. REFERENCES
Aalto, J., Pirinen, P., & Jylhä, K., 2016. ”New gridded daily climatology of Finland:
Permutation‐based uncertainty estimates and temporal trends in climate.” Journal of
Geophysical Research: Atmospheres, 121, 3807-3823.Copernicus Climate Change
Service (C3S), 2017. ”ERA5: Fifth generation of ECMWF atmospheric reanalyses of the
global climate”. Copernicus Climate Change Service Climate Data Store (CDS),
Accessed 17 Apr 2019. https://cds.climate.copernicus.eu/cdsapp#!/home

Holovaty, A, and Kaplan-Moss, J., 2009. “The definitive guide to Django: Web
development done right”, Apress, pp. 3-74.

Luojus, K., J. Pulliainen, M. Takala, M. Kangwa, T. Smolander, A. Wiesmann, C. Derksen,
S. Metsämäki, M. Salminen, R. Solberg, T. Nagler, G. Bippus, S. Wunderle, F. Hüsler,
2013. “GlobSnow-2 Product User Guide Version 1.0”, Available online at
http://www.globsnow.info/swe/GlobSnow2_SE_SWE_Product_User_Guide_v1_r1.p
df

Massé, M. 2012. ”REST API Design Rulebook”, O’REILLY, pp. 85-91

Obe, R. O. and Hsu, L. S., 2011. “PostGIS in action”, Manning Publications Co., pp. 13-
14

Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J.,
Derksen, C., Davydov, S., Davydova, A., Boike, J., Langer, M., Drusch, M., and Pulliainen,
J. 2016. ”SMOS prototype algorithm for detecting autumn soil freezing”. Remote
Sensing of Environment, 180, 346-360. DOI: 10.1016/j.rse.2016.01.012

Stones, R and Matthew, N. 2006. “Beginning databases with PostgreSQL: from novice
to professional”, Apress, pp. 11-16.

World Meteorological Organization, 1992. ”International Meteorological Vocabulary”,
WMO – No. 182. pp. 784. ISBN 978-92-63-02182-3

https://cds.climate.copernicus.eu/cdsapp#!/home
http://www.globsnow.info/swe/GlobSnow2_SE_SWE_Product_User_Guide_v1_r1.pdf
http://www.globsnow.info/swe/GlobSnow2_SE_SWE_Product_User_Guide_v1_r1.pdf

D3.1 – V1

 Page 45

10. APPENDIX A – Umbrella Hub API query
parameters

Table 3 - Query parameters, operators and examples.

Product Type Parameter (product_type)

Distinct Values RAW, OCN, SLC, GRD (Sentinel 1) / S2MSI2Ap,S2MSI2A, S2MSI1C (Sentinel
2) / SY_2_SYN___,SR_1_SRA_A_,SR_2_LAN___,SL_2_LST___,SY_2_VG1___,

OL_2_LRR___,OL_2_LFR___,OL_1_EFR___,SY_2_VGP___,SL_1_RBT___,
SR_1_SRA_BS,SR_1_SRA___,OL_1_ERR___(Sentinel-)

Operators = (equals) / icontains= (containing case insensitive text) / icontains != (does
not contain case insensitive text)

Example /products/sentinel1?product_type=GRD&format=json
/products/sentinel2?identifier__icontains=S2A&format=json

Polarization Parameter (polarization)

Distinct Values HH, VV,HV,VH,VH VV,HH HV,VV VH

Operators = (equals) / __in= (value in list of values)

Example
/products/sentinel1?polarization=HH& product_type=GRD &format=json

/products/sentinel1?polarization__in=VH,HH&format=json

Sensing Date Parameter (sensing_date)

Distinct Values
Operators = (equals), __lte=(less than or equal), __lt=(less than), __gt=(greater than or

equal), __gt=(greater than), __range=
Example /api/products/sentinel1?sensing_date__range=2019-02-15,2019-02-22

&format=json

Relative Orbit Number Parameter (relative_orbit_number)

Distinct Values 1-175 (Sentinel 1) / 1-143 (Sentinel-2) / 1-442 (Sentinel-3)
Operators = (equals), lte(less than or equal), lt(less than), gte(greater than or equal),

gt(greater than)
Example /api/products/sentinel1?relative_orbit_number__gt=100&format=json

Area of Interest Parameter (in_bbox)

Distinct Values
Operators = (equals)

Example /api/products/sentinel1?in_bbox=-90,29,-89,35&format=json

Cloud Coverage (cloud_coverage)

Distinct Values 0-100
Operators = (equals), __lte=(less than or equal), __lt=(less than), __gt=(greater than or

equal), __gt=(greater than), __range=
Example /api/products/sentinel1?cloud_coverage__lte=20&format=json

D3.1 – V1

 Page 46

11. APPENDIX B – Work done in other tasks

11.1. Meteorological and climatological data acquisition

In WP3, the task 3.3 Meteorological and climatological acquisition aims to gather the
necessary meteorological and climatological data and provide the data to EOPEN
users. In this section, we provide a short overview of the task; deliverable D3.2 (due
Month 26) will include a more detailed description of the task and the acquired data.

Here, meteorological and climatological data refer to information about weather and
climate. According to World Meteorological Organization (1992), weather is defined
as ”state of the atmosphere at a particular time, as defined by the various
meteorological elements”, while climate is defined as ”synthesis of weather conditions
in a given area, characterized by long-term statistics (mean values, variances,
probabilities of extreme values, etc.) of the meteorological elements in that area”.

Below is a list of the main categories of data, which we are considering to use in this
task:

• Weather observations: This data includes instantaneous weather
observations from automatic weather stations (AWS), and statistics for
daily, monthly, seasonal, and yearly values. We also consider derived
products, such as grid-interpolated timeseries (e.g. FMI ClimGrid; see Aalto
et al., 2016), a part of weather observation data.

• Weather model output: This data includes both numerical weather
prediction (NWP) model forecasts and model reanalyses, for example ERA5
(Copernicus Climate Change Service, 2017).

• Climatological values: Long-term statistics of meteorological elements.
Typically the statistics are calculated over a 30-year period, for example
1981-2010.

• Climate model output: Estimated changes in climatological values over
decades, as calculated by specialised numerical weather models.

• EO-based snow and ground frost related products: For example,
GlobSnow SWE (Luojus et al., 2013) and SMOS Level 3 Freeze/Thaw
(Rautiainen et al., 2016)

Current EOPEN Framework in meteorological and climatological data acquisition

Currently we’re mapping and defining the weather and climate data needs for the use
cases and selecting the potential data sources for the data. The aim is to have all
datasets from machine-readable APIs, which follow the industry standards (e.g.
RESTful). Machine-readability is desired so that the data can be automatically retrieved
from sources to EOPEN platform. In the case where an identified data need cannot be
fulfilled via any API, we will consider whether the data can be transferred to EOPEN
platform manually. The manual transfer should be done only for datasets, which are
critical for any use case, and have infrequent refresh cycles. Manual transfers are
considered case-by-case, should a need for it arise.

D3.1 – V1

 Page 47

Table 4 lists the current data sources we’ve identified and are investigating. We expect
the list is not exhaustive, as the meteorological and climatological data requirement
mapping is not yet finished. We will consider unlisted data sources, for example
NOAA’s services, if these sources offer data which is requested by use cases and is
unavailable from listed sources. Open data is preferred whenever possible, so that data
is easily available for EOPEN users and without usage restrictions.

Table 4: Data sources and their data sets, which are currently under consideration.

Source Potential datasets Status Openess

FMI Open
Data

Finnish weather
observations;
NWP forecasts;
Finnish
climatology;

Work in
progress

Machine-readable API;
no registration needed;

Paituli spatial
data
download
service

FMI ClimGrid API under
evaluation

Machine-readable API;
Some datasets are not available
via API;
some datasets are restricted;
no registration needed;

KMA
OpenAPI

Korean weather
observations

API under
evaluation

Machine-readable API;
registration needed;

C3S Climate
Data Store

ERA5 reanalysis API under
evaluation

Machine-readable API;
registration needed;

Sodankylä
National
Satellite Data
Centre

GlobSnow SWE;
SMOS Level 3
Freeze/Thaw

FTP under
evaluation

FTP access;
credentials needed for FTP;
data unlicensed;

Notably, weather observations from Italy are missing from the data source table. While
PUC1 utilises meteorological and climatological data, AAWA obtains Italian weather
observations directly from Italian authorities, and thus Italian weather observations
are not considered in this task.

D3.1 – V1

 Page 48

11.2. Social Media Crawling

One of the main objectives of EOPEN is to gather information from multiple
heterogeneous sources and thus collect both EO and non-EO data. Regarding non-EO
data, the focus is on online content from social media and particularly the popular
platform Twitter. With the assist of the end users, an appropriate search is performed
to crawl social media posts that are interesting to the use cases examined within the
project. Collected data are then displayed and filtered, but they can also serve as input
to other tasks, including the event detection, the clustering of non-EO content, the
similarity fusion and the community detection.

The current implementation of the social media crawling procedure can be seen as a
flow in Error! Reference source not found.In order to gain access to the global stream o
f Twitter data, Twitter API23 has been selected. This platform offers the free option to
stream real-time tweets exploiting filtering capabilities. Filters can be keywords to be
found inside the post, identifiers of user accounts and location boxes. Following the
end users’ suggestions, such filters have been defined for the use cases of flooding (in
English and Italian), snow coverage (in English and Finnish) and food security (in
English and Korean). These retrieval options are stored in a MongoDB collection and
are used as input to the Twitter API, along with unique credentials that are required.
In a real-time manner the API constantly retrieves newly created tweets, which satisfy
the filtering criteria, in a JSON format. Since all filter options necessarily form a single
query, a reverse process is needed to find which use case and which language the new
tweet has been matched to.

Figure 31. Complete flow of the Social Media Crawling.

Before storing the crawled tweets, an additional analysis is performed to enhance the
data or check their quality. Firstly, tweets are automatically classified as fake or real

23 https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

https://developer.twitter.com/en/docs/tweets/filter-realtime/overview

D3.1 – V1

 Page 49

by a ready solution developed in CERTH [] in order to overcome the current trend of
hoax news in social media. Then, a localization methodology tries to detect the
locations mentioned inside the posted text and assign corresponding coordinates, so
as to be able to appear on a map. More details on the localization technique will be
provided in the upcoming deliverable D5.1 (M19). If the tweet contains an image,
visual concepts are extracted from the image, as well as its feature vector to be later
used in the similarity fusion. Concept and feature vector extraction has been
introduced in deliverable D4.1 (M16) and will be further described in deliverables D4.3
(M31) and D4.4 (M33). The initial JSON received by Twitter API is updated with all the
outcomes of the afore-mentioned analyses and, finally, it is stored to a respective
collection in the MongoDB (one collection per use case and language).

At the point of writing, more than 6.5 million tweets have already been collected. The
size of each collection and the exact time period of crawling can be seen in Table 5.
The database is password-protected and IP-protected and EOPEN takes all possible
measures to be compliant with the guidelines and restrictions declared in Twitter’s
“Development Agreement and Policy”24. Sharing the data to third parties is prohibited
and regular checks are performed to the collections in order to find tweets that are no
longer available on Twitter and thus have to be removed from the EOPEN database
too. More details are reported in deliverable D9.1 (resubmitted in M17).

Table 5: Current number of crawled tweets per collection.

Dataset # English # Other Language

Flood events (Mar 2017 – Apr 2019) 6,071,617 Italian 76,768

Snow cover (Dec 2017 – Apr 2019) 44,876 Finnish 35,225

Food security (Dec 2017 – Apr 2019) 454,163 Korean 1,900

The stored tweets can be displayed on a dedicate user interface (Figure 32). Text,
image (if existing), and publication date are shown per tweet, while user accounts are
pseudonymised. Additionally to this information, users of the interface are presented
with the classification of the tweet as real or fake, the detected locations and the
extracted image concepts. Available filter capabilities include use case selection, time
period of publication, keywords, and the option to filter out retweets, fake tweets,
and tweets without images.

At this stage, the EOPEN Dashboard (the main Web platform of the project) contains
a page to display and filter tweets, similar to the dedicated user interface, using a copy
of the original MongoDB. The next step will be to have the two databases
synchronized, while the final goal is to deploy the crawling procedure and all the

24 https://developer.twitter.com/en/developer-terms/agreement-and-policy.html

https://developer.twitter.com/en/developer-terms/agreement-and-policy.html

D3.1 – V1

 Page 50

analysis modules in the EOPEN platform. Other future works concern the integration
of a service to exclude posts with pornographic material and the implementation of
two classification techniques -one based on visual and one on textual features- to
estimate whether a collected tweet is in fact relevant to the examined use cases.

Figure 32. Screenshot of the dedicate user interface to display and filter collected
social media.

D3.1 – V1

 Page 51

12. APPENDIX C – NEXTGEOSS “Sentinel Linker
Service” VS EOPEN “Umbrella Hub Application”

12.1. Sentinel Linker Service Solution

To fulfill task 3.1 of NextGEOSS Project, it was agreed with the project Coordinator
(DEIMOS), and WP/Task leader (DLR), and the platform responsible (TDUE), that NOA
will develop a "Sentinel Linker application" to federate Sentinel data available in the
rolling archives of Hellenic Mirror Site, CODE-DE, and the CollHub3 (Access is restricted
only for specific users) and make them available to the NextGEOSS pilots through the
CKAN instance developed in WP2. The application was denominated as “Sentinel Data
Linker Service" and was built based on the Data Hub Software (DHuS,
https://sentineldatahub.github.io/DataHubSystem) as at the time it has been the
main solution adopted by ESA for the operation of Copernicus Hubs and still stands
the main architecture for all Copernicus Hubs and several of the Mirror Sites. To be
noted that DHuS provides a GUI, which is well known, the users are familiar to using
it, a system that is incorporating OpenData and OpenSearch (machine-to-machine
interfaces) APIs. For this reason, NOA has been mandated to proceed with DHuS
solution for developing the relevant metadata harvester solution. This development
in the framework of the NextGEOSS project was completed and delivered to WP2 on
06/2019.

12.2. Umbrella Hub Application.

As time evolved and with the continuous development of Sentinel Data Access Points
and Copernicus Hubs and Mirror Sites, and with the advent in the meantime, of the
implementation of DIAS platforms, the needs for seamless and timely access to on-
line Sentinel Data through additional gateways has been significantly important.
Therefore, and as imposed by the EOPEN concept, a need emerged for the
development of an interface that is DHuS independent. This new endeavor required
development of new APIs from scratch in different time frames than NextGEOSS with
the allocation of diverse development skills. In turn this allowed the access to other
Hubs than the planned to support the NextGEOSS pilots. More details about systems’
functional characteristics and corresponding time schedule for their development are
given below (please see Table 6). This latter need led to the development of the EOPEN
advanced umbrella solution, which took place in different time periods, with the
NextGEOSS solution starting on 1/2019 and ending 06/2019, while the EOPEN has
started on 03/2019 and is still ongoing. The main difference between the two solutions
is that the NextGEOSS harvester is using the DHuS architecture while the EOPEN
solution is based on a more flexible and open source architecture. It can connect to
any API that meets certain requirements, ensuring interoperability with different
architectures, while the Sentinel Linker application can only connect to DHuS-based
Hubs and use the internal synchronizer modules to populate its metadata database.
Finally, the overall design of the EOPEN solution was made to be linearly scalable with
an increasing number of connected hubs in terms of data storage and execution time.

D3.1 – V1

 Page 52

12.3. Differences between Sentinel Linker Service and Umbrella
Hub Application

The two different architectures and applications, the Sentinel Linker Application
(NextGEOSS) and the Umbrella Hub (EOPEN), have concluded with the development
and delivery of two completely different software with completely different
architectures, modules and technologies: the 1st one is a modified DHuS where we
have made several changes to its internal architecture, and the second one is an
entirely new set-up. Both of them are available to download and experiment with, and
we invite you to do so (see apps links in Table 6). This will help appreciate how
different the two applications are.

More specifically, what was developed by NOA in NextGEOSS can be found herein
below:

1. Containerize DHuS application;

2. Setup and test remote debugging profile

3. New database schema design and deployment by adding new tables in the

DHuS DB structure

4. An interface that checks continuously the products and products availability,

along with information related to Hellenic Mirror Site, CollHub 3 , CODE-DE,

and/or other DHuS based portal performance, and the management of the

relevant log files that indicating response time, error messages and the

timestamp.

5. Override existing Synchronization and Eviction implementations between the

three DataHubs.

Figure 33. NextGEOSS - Updated Database schema with additional tables

D3.1 – V1

 Page 53

Moreover, the responses received by users is depicted in Figure 34 and provided
both in JSON and XML responses.

Figure 34. NextGEOSS – Sentinel Linker Service OpenSearch responses

Moving to Umbrella Hub Application, it covers the specific needs, as envisaged in the
relevant GA, to address the pilots through a dedicated open platform set by partner:
Space Applications. In this regard, NOA has developed and integrated a prototype
single data access point deployable on the EOPEN platform. The application provides
to the EOPEN platform users, uniform access to Sentinel 1, Sentinel 2, Sentinel 3 and
Sentinel 5p metadata via connecting in the back end to a larger (than NextGEOSS)
number of the available Sentinel hubs and serving the results via an application
programming interface (API).

Specifically, the goal is achieved by the system architecture design allowing Sentinel
metadata search and collection from all the available hubs, DHuS-based or not. The
system overview depicts the various ways in which the developed application
functions and is accessible by the user. There are three main processes that take place
in order to eliminate the aforementioned weaknesses: i) searching hubs for new
metadata, ii) scoring hubs based on performance, and ii) deleting unavailable
metadata.

Finally the system provides via an API the collected Sentinel metadata by allowing
users to perform requests on the database resources and get the download link for
the required products.

D3.1 – V1

 Page 54

Below you can see the activity diagram and a scenario based on which of a user wants
to get all Sentinel-2 products for the summer of 2019 over a specific area of interest
(bounding box). The request will be the following:
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel2?in_bb
ox=20.8,38.41,23.82,40&sensing_date__gte=2019-08-01&sensing_date__lte=2019-
08-31&format=json

As a summary, the Table 6 presents the main differences of the two applications,
developed by NOA.

https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel2?in_bbox=20.8,38.41,23.82,40&sensing_date__gte=2019-08-01&sensing_date__lte=2019-08-31&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel2?in_bbox=20.8,38.41,23.82,40&sensing_date__gte=2019-08-01&sensing_date__lte=2019-08-31&format=json
https://proto2.eopen.spaceapplications.com/eocatalogue/products/sentinel2?in_bbox=20.8,38.41,23.82,40&sensing_date__gte=2019-08-01&sensing_date__lte=2019-08-31&format=json

D3.1 – V1

 Page 55

Table 6. The main differences of the Sentinel Linker Service and the Umbrella Hub Application

 Characteristic of Architecture and concept DataHubs Harvested
Start of

Development
End of Development APIs used Deployment

N
ex

tG
E

O
S

S

The implementation of the Linker mechanism within ESA's

DataHub Software works by overriding the standard product

synchronization and eviction routines. Every couple

minutes, it synchronizes the latest products' metadata, as

well as the newly evicted products from the enlisted

DataHub Services and updates each products' availability.

Every 8 hours (interval that can be changed through settings)

a new performance indicator is produced for each DataHub

using the performance metrics (response time, availability)

which are stored during each synchronization round. The

products catalog, as well as their availability, can be

accessed using the well-known OpenSearch API that DHuS

already uses. Last but not least the products availability list

appears sorted using the performance metrics, we mentioned

above, within the products metadata.

Staging: environment

collhub3 & Hellenic

Mirror Site

Production:

Collaborative

DataHubs using DHuS

software (Finnish,

Portugal, ApiHub,

Schihub, Hellenic,

Austrian) &

Sentinel-5P Pre-

Operations Data Hub)

CODE-DE connectors

are not working as hub

is in an transition

period

 01/2019

6/2019

(waiting feedback from

WP2 to move to the

production environment,

and start the

synchronization with

different hubs)

 OpenSearch API

(interface on top of

SOLR)

Sentinel Linker

Service (staging

environment):

http://83.212.169.17

0:8081/search?q=*&

format=json

Username: root

Pass: password

GRNET(Staging

)

GRNET

(Scalability-

mode using

external SOLR

and

PostgreSQL)

Pending

waiting

feedback from

WP2 actions to

move to the

production

environment

http://83.212.169.170:8081/search?q=*&format=json
http://83.212.169.170:8081/search?q=*&format=json
http://83.212.169.170:8081/search?q=*&format=json

D3.1 – V1

 Page 56

E
O

P
E

N

The implementation of the Umbrella hub can be split into

two different modules: the database module and the

application module As this Umbrella hub saves metadata

from several hubs, there is the need for a database system.

The database stores not only information about the metadata,

but also information about the hubs. Metadata information is

the same with the one on the source hubs, e.g. polarization

for Sentinel-1 or cloud coverage for Sentinel-2. Moreover,

the database is populated with new data so that users have

access to newly ingested metadata as fast as possible. Thus,

a searching application is executed every fifteen minutes. At

the same time, hubs delete their data due to either their

rolling archive policy or due to several other reasons, such

as duplicate, corrupted products et cetera. The Umbrella hub

has to update the metadata in the database by deleting them

when they are deleted from the hubs. Therefore, the delete

process takes place once per day to prevent users from

attempting to download a product that is no longer available.

The greatest advantage of this Umbrella hub is that it

provides users the download link from the most appropriate

hub for the requested product. This is achieved by a scoring

process which runs every ten minutes and checks the

availability of the hubs. If the hub is available, it also

measures its download speed. Hubs get points based on their

availability status and download speed. The total score of

each hub is stored in the database. Thus, when users make a

request to the Umbrella hub API, they get as a response the

metadata that stem from the hub with the highest score and

in which the products are available. This way, users take

advantage of the best combination of the product-hub pair.

Copernicus Open

Access Hub, Hellenic

Mirror Site, Sentinel-

5P Pre-Operations

Data Hub, Finnish

Data Hub System,

Austrian Data Hub

System, Czech Data

Hub System, PEPS,

Onda-DIAS, Norway

Collaborative Hub,

Rosa Hub

3/2019 Still ongoing

06/2019 – onwards

1st prototype of the

application was used

from EOPEN’s users,

receiving feedback and

fine tuning activities

from NOA

Undergoing activities to

integrate more non-

DHuS hubs

Django REST

framework has been

used for

implementing the

Umbrella API.,

which offers four

endpoints, one for

each Sentinel

mission. The general

form of a request is

https://proto2.eopen.

spaceapplications.co

m/eocatalogue/produ

cts/<mission>?&for

mat=json.

In addition to the

aforementioned

lookup parameters,

Django framework

allows to use more

sophisticated

lookups; several

parameters can be

added to the request

query such as the

relative_orbit_numb

er, the sensing_date,

a bbox et cetera.

 SpaceApps

platform

https://proto2.eopen.spaceapplications.com/eocatalogue/products/
https://proto2.eopen.spaceapplications.com/eocatalogue/products/
https://proto2.eopen.spaceapplications.com/eocatalogue/products/
https://proto2.eopen.spaceapplications.com/eocatalogue/products/

D3.1 – V1

 Page 57

12.4. Use case description – Introducing the aim of applications

A use case is presented below that introduces the aim of the different applications
developed from NOA within the scope of NextGEOSS and EOPEN.

A research organization (RO) at northern Italy is tasked by the regional Civil Defense
authority (e.g. local DPC), to rapidly provide flood delineation maps following flash
floods that occur frequently in the region. The requirement is the short timeliness for
the delivery of the product, as officers need to make rapid assessments and take
decisions. Time is of paramount importance for this application.

The RO has access to a novel algorithm that is fed with Sentinel-1 Synthetic Aperture
Radar Data. The algorithm performs fast in its execution, so the time bottleneck is the
availability of satellite data. The developer team from the RO have three options for
accessing data in an automated way:

1. Create a script that regularly queries Copernicus Open Hub or their National
Sentinel Mirror Site.

2. RO deploys the application within one of the available DIAS, and rely on the
data that is available in the particular DIAS.

3. Create a script that regularly queries either of our applications (NextGEOSS of
EOPEN).

For the three options above these are the pros and cons respectively:

1. (i) The service has a single point of failure, the Open Hub, in terms of
availability, (ii) Open Hub experiences the lowest download rate so far, which makes
sense since it has the largest user base. (iii) The timeliness of the satellite data (i.e.
when they become available to be downloaded by users) relies on the data
synchronization setup, from the backend repository where all data lay.

On the plus side, only one account is needed.

2. (i) The service has again a single point of failure to what concerns data access:
the selected DIAS, (ii) Copernicus data have now two layers of synchronization to pass
through, before becoming available: From the repository back-end —> to the
Copernicus DIAS Hub Centers 1,2 and 3 (operated on behalf of ESA by three separate
contractors) —> to one of the four available DIAS environments. Therefore, we would
anticipate that for this criterion. Open Hub would outperform DIAS Hubs.

On the plus side, download rates are extremely high, since data transfer happens in
the internal DIAS network. Again, only one (DIAS) account is needed.

3. (i) The service does not rely to a single Hub for accessing data. It connects to
multiple Hubs, and through Hub diversity will have the highest availability (in terms of

D3.1 – V1

 Page 58

data access) for both 1. and 2. above, (ii) The umbrella Hub for example does not sync
data, only metadata. As soon as a requested Sentinel product becomes available, our
application will become aware. The timeliness of the umbrella Hub is as good as the
timeliness of the best performing Copernicus or DIAS Hub for this criterion, (iii) The
product will be downloaded each time by the best performing Hub in terms of
capacity. However, it will never match the download rates of any of the DIAS hubs that
will store the product locally.

On the cons side, our applications will have to use as many accounts, as the number
of Hubs it connects to. If we connect to 10 different Hubs then we will need 10
different accounts to be created once following the ESA policy on data download and
user tracking.

On the plus side the applications we have developed will be a solution for RO that will
be the cheapest, has the best availability in terms of data access, matches the
timeliness performance of the best performing Hub, and also secures downloading
from the Hub with the highest, at the time, download capacity if the same product
exists in more than one Hub.

12.5. Why not use a DIAS platform

The use case provided above is evident of application’s aim. Therefore, users should
be capable to access any of the existing data access points, and DIAS is only one
possible platform, providing access to raw Sentinel data. The applications we have
developed do not aim to create services for downloading a lot of Sentinel data. We
aim at:

1. Minimizing collective data access downtime, which create bottlenecks in

production systems/applications.

2. Achieving the best performance in terms product timeliness. In principle, a

product will appear sooner in our Sentinel Linker or umbrella application than

it would on a DIAS.

3. Providing a cost-efficient application for accessing data.

12.6. Conclusions

Sentinel Linker Service (NextGEOSS) development came as a follow up to be usable by
any platform, fully interoperable, and based on the need that in the meantime new
sentinel access points had been available which are only using DHuS. Since then many
more platforms became available, but the users still facing the problem of having a
fragmented ecosystem of access points, thus users would need guidance to accessing
the best hub.

The EOPEN solution is developed so as to access to any hub that is using open
standards and is performing many tests on the fly including data integrity, connection
speed. These tests contain a scoring process that is executed every ten minutes for
checking the availability of each hub. In addition, it measures the download speed for

D3.1 – V1

 Page 59

the same type of products in order to rank the hubs, leading to the optimal selection
for the most efficient hub related to a product at a particular instance. Nowadays the
developments in EOPEN have established the link with PEPS and Onda-DIAS.

If a user is more comfortable to use the standard UI of DHuS and its functionality, then
she will use the Sentinel Linker Application. If a user requires more flexibility and
better performance then she will exploit the EOPEN Umbrella Hub. From our side, we
will keep maintaining and supporting both applications. As far as ESA keeps having
DHuS as its main data access software and most of the Mirror Sites use this as well,
the Sentinel Linker Application is useful. When more customized solutions are
required, then Umbrella Hub is the way to go.

The developments and allocation of funding in NextGEOSS for this action have been
done in different time frames than the newer version of EOPEN (which started in a
later time and is still on-going). No funds have been dedicated for this action in
NextGEOSS since June 2019 that the DHuS based architecture was finalized. Since
then NextGEOSS team (WP2) has started to test the developed DHuS application at
staging environment at the second quarter of 2020 before moving it to the production
environment.

