

D6.4 – EOPEN 2
nd

 Prototype Page 1

EOPEN
opEn interOperable Platform for unified access and analysis of Earth

observatioN data

H2020-776019

D6.4

EOPEN 2nd Prototype

[User and Developer Guides]

D6.4 – EOPEN 2
nd

 Prototype Page 2

Dissemination level: Public

Contractual date of delivery: 31/12/2019

Actual date of delivery: 31/05/2020 (resubmission)

Work package: WP6 System Development and Integration

Task: T6.2 EOPEN System Integration
T6.4 Interactive real-time user-friendly visualisations

Type: Demonstrator

Approval Status: Approved

Version: 1.1

Number of pages: 98

Filename: EOPEN-SA-D6.4-v1.1 - EOPEN 2nd Prototype.docx

Abstract

This document describes the features and the capabilities supported by the EOPEN
2nd Prototype software. It is part of the result of the work performed on T6.2 "EOPEN
System Integration" and T6.4 "Interactive real-time user-friendly visualisation".

The document is a volume containing two independent parts:

 PART A contains the User Guide of the EOPEN Platform. It describes how an

end-user may use the platform to search for and visualise the available data.

 PART B contains the Developer Guide. Its purpose is to describe the features

provided by the EOPEN Platform to import new algorithms and implement new

workflows.

Annexes include a glossary of the main terms as well as an inventory of the

EOPEN modules available in the Second EOPEN Prototype (D6.4).

The information in this document reflects only the author’s views and the European Community is not liable for
any use that may be made of the information contained therein. The information in this document is provided as
is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability.

co-funded by the European Union

D6.4 – EOPEN 2
nd

 Prototype Page 3

Table of Contents

PART A. EOPEN USER GUIDE .. 5

1 INTRODUCTION ... 9

1.1 General Concepts .. 9

1.2 User Accounts / Authentication .. 9

1.3 Configuration ... 9

2 THE EOPEN USER PORTAL ...10

2.1 Site Map and Page Layout ..10

2.2 System Dashboards ...13

2.2.1 GIS Viewer ..13

2.2.2 Social Media (Tweets) Viewer ...18

2.2.3 Notifications and Instant Messaging ..19

2.3 Creating Custom Dashboards..21

2.4 Modifying Custom Dashboards ...23

2.5 Available Graphical Components ..23

2.5.1 Tweets Filter ...23

2.5.2 Tweets List ..24

2.5.3 Map (Leaflet) ...25

2.5.4 Topics Filter ..25

2.5.5 Topics List ...26

2.5.6 Topic Tweets List ..27

2.5.7 Weather Data Example (Mockup) ...28

PART B. EOPEN DEVELOPER GUIDE ...31

1 INTRODUCTION ..36

1.1 The EOPEN Application Lifecycle ...36

1.2 End-to-End Usage Scenario ...37

2 THE EOPEN DEVELOPER PORTAL ...39

2.1 Site Map ...39

2.2 Home Page ..40

2.3 User Authentication ..40

2.4 Header Panel ...41

2.5 Processes Management ...42

2.5.1 Process Development Lifecycle ..42

2.5.2 Processes Management Page ..43

2.5.3 Creation of a New Process ...44

2.5.4 Creation of a new Process Version ...45

D6.4 – EOPEN 2
nd

 Prototype Page 4

2.5.5 Generation of a Process Wrapper Script ...46

2.5.6 Upload of the Process Version Implementation Files ..48

2.5.7 Building the Process Version ..51

2.5.8 Releasing a Process Version ..53

2.5.9 Process Sharing ..54

2.5.10 Process Implementation Guidelines ..56

2.6 Workflows Management ...60

2.6.1 Creation of a New Workflow ..61

2.6.2 Workflow Editing ...62

2.6.3 Workflow Configuration Guidelines ...64

2.6.4 Workflow On-Demand Execution ..77

2.6.5 Workflow Executions Scheduling ..78

2.6.6 Workflow Execution Monitoring ...80

2.6.7 Workflow Execution Report ...81

2.6.8 Workflow Sharing ..82

APPENDIX A GLOSSARY ..84

APPENDIX B INVENTORY OF THE INTEGRATED EOPEN MODULES87

B.1 Integrated Processes ..87

B.2 Integrated Services ...89

APPENDIX C SNAP GRAPH PARAMETERISATION ...91

APPENDIX D EXAMPLE PROCESS_WRAPPER.PY SCRIPTS93

D.1 Execution of a SNAP Graph using GPT ..93

D.2 Execution of GeoTriples using JRE ..95

D.3 Execution of local shell scripts ..97

D6.4 – EOPEN 2
nd

 Prototype Page 5 PART A – EOPEN User Guide

PART A. EOPEN User Guide

Abstract

This document is the EOPEN User Guide. Its purpose is to describe the features and
the capabilities supported by the EOPEN User Portal.

The content of this document is part of the result of the work performed on
T6.2 "EOPEN System Integration" and T6.4 "Interactive real-time user-friendly
visualisation".

D6.4 – EOPEN 2
nd

 Prototype Page 6 PART A – EOPEN User Guide

History of PART A

Version Date Reason Revised by Approved By

1.0 13-Jan-2020 First Release Authors Leslie Gale

Author list

Organisation Name Contact Information

SpaceApps Bernard Valentin bernard.valentin@spaceapplications.com

SpaceApps Hakim Boulahya hakim.boulahya@spaceapplications.com

D6.4 – EOPEN 2
nd

 Prototype Page 7 PART A – EOPEN User Guide

Executive Summary of Part A

This deliverable presents the intermediate result of the work performed on the “interactive

real-time user-friendly visualisations” task. This result corresponds to the software integrated

in the second prototype EOPEN Platform.

The objective of the EOPEN User Portal is to provide to end-users means to search for and

visualise the data available in the EOPEN Platform in the most appropriate manner. The

available data may be “proxied” (thus fetched in real-time from external sources such as

FMI), may have been manually or automatically ingested as it is the case of weather forecast

and tweets data, or may have been generated within the platform as it is the case of water

body masks and rice paddy fields maps.

The EOPEN User Portal is meant to be generic. It integrates a series of System Dashboards

that are pre-configured to display different types of data of interest whatever the use case. It

also provides a series of graphical components that may be used to create custom

dashboards.

This document describes how users may use the EOPEN User Portal to find and visualise

data but also how to create new dashboards to better meet their needs.

How to access the Second EOPEN Platform Prototype User Portal

The EOPEN User Portal described in this document is available at the following address:

https://proto2.eopen.spaceapplications.com

https://proto2.eopen.spaceapplications.com/

D6.4 – EOPEN 2
nd

 Prototype Page 8 PART A – EOPEN User Guide

Abbreviations and Acronyms

AOI Area of Interest

API Application Programming Interface

ASB Automated Service Builder

EO Earth Observation

EOPEN opEn interOperable Platform for unified access and analysis of Earth observatioN

data

ESA European Space Agency

FSM Full Strip-Map

FTP File Transfer Protocol

GDAL Geospatial Data Abstraction Library

GPT Graph Processing Tool

GUI Graphical User Interface

HTTP Hyper-Text Transfer Protocol

JSON JavaScript Object Notation

OGC Open Geospatial Consortium

S1, S2, S3 Sentinel-1, Sentinel-2, Sentinel-3

SNAP Sentinel Application Platform

SpaceApps Space Applications Services

VM Virtual Machine

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

D6.4 – EOPEN 2
nd

 Prototype Page 9 PART A – EOPEN User Guide

1 INTRODUCTION

This document describes the features and capabilities implemented in the EOPEN User

Portal integrated in the second EOPEN Platform prototype. It is an intermediate result as the

current capabilities will be improved and new components will be added to support additional

data types and visualisations.

The next version will be integrated in the final release of the EOPEN Platform.

1.1 General Concepts

The EOPEN User Portal makes use of a few general concepts to refer to its building parts.

First of all, there is the Portal itself. This refers to the whole Web application. All the pages,

menus, graphical components visible in the Web browser are considered as building blocks

of the Web portal.

Besides a couple of special pages (including the “Home” page and the “About” page), the

pages that are used to display data available in the EOPEN Platform are called

Dashboards. Dashboards contain one or more graphical (web) Components which are

used to search and visualise the data. Different filters and viewers are available to support

the different types of data present in the platform.

The next chapter describes in details the available dashboards and components and

explains how new custom dashboards can be created by selecting and arranging

components as needed.

1.2 User Accounts / Authentication

The EOPEN Web Portal is currently accessible without restrictions. The displayed

information and the dashboards created by the users are publicly accessible.

This is a temporary situation. The implementation roadmap foresees a merge of the EOPEN

Web Portal with the Developer Portal. At that time the role-based access control already

used to restrict access to the developers will also be applied to the end-users who only need

to access the Web Portal described in this document.

1.3 Configuration

As users are not yet individually recognised, the changes applied to the portal pages are

shared and customisable by anyone.

D6.4 – EOPEN 2
nd

 Prototype Page 10 PART A – EOPEN User Guide

2 THE EOPEN USER PORTAL

This chapter describes the user interface of the EOPEN User Portal. Next section gives an
overview of the available pages and the main navigation links.

The remaining of the chapter describes the pre-defined pages, the available components and
the controls for creating and customising new pages.

2.1 Site Map and Page Layout

Figure 1, below, shows the structure of the EOPEN User Portal. Except the banner panel

shown on the left, each box represents a Web page and the arrows show the navigation

between the pages.

Figure 1 – EOPEN User Portal Site Map

D6.4 – EOPEN 2
nd

 Prototype Page 11 PART A – EOPEN User Guide

The EOPEN User Portal Home Page (https://proto2.eopen.spaceapplications.com)

welcomes the visitor. The page body informs about the EOPEN project and provides a link to

the Developer Portal, described in a separate document.

The page banner, included in all pages, contains the following elements:

 The EOPEN logo that leads to the Home Page.

 A Dashboards menu which lists the available dashboards grouped in two categories:

- “Your dashboards” contains the dashboards created and configured by the users. In a

fresh installation this category is empty.

Important: As the dashboards are currently shared among the users, pay attention not

to modify a dashboard without the consent of its creator, if known.

- “System dashboards” lists the built-in dashboards. These are pre-defined in the

EOPEN Portal and are not editable.

The GIS Viewer dashboard allows searching and visualising geospatial data on

backgound maps. The GIS Viewer dashboard is described in section 2.2.1.

The Social Media dashboard allows searching, inspecting and visualising collected

Tweets on an interactive map. This dashboard is described in details in section 2.2.2.

The Notifications dashboard displays the messages issued by the applications

running in the EOPEN Platform through Mattermost channels. The Notifications and

Instant Messaging dashboard is described in section 2.2.3.

 A New dashboard button that allows creating custom dashboards, as described in

section 2.3.

 A Developer Portal » button that leads to the EOPEN Developer Portal described in the

dedicated EOPEN Developer Guide.

 An Edit dashboard button is displayed on the right side and only when an editable

Dashboard is selected. Click on this button to enter the dashboard editing mode, as

described in section 2.3

 A menu that allows selecting the display language. Supported languages are English (en),

Italian (it), Finnish (fi) and Korean (ko, as shown on Figure 3).

 A question mark icon leads to the About page. This page provides technical information

about the portal including the list of the integrated third party data and software.

https://proto2.eopen.spaceapplications.com/

D6.4 – EOPEN 2
nd

 Prototype Page 12 PART A – EOPEN User Guide

Figure 2 – Home Page

The following screenshot shows how the Home page is displayed when the Korean language

is selected:

Figure 3 – Home Page (Korean Version)

D6.4 – EOPEN 2
nd

 Prototype Page 13 PART A – EOPEN User Guide

2.2 System Dashboards

Pre-defined pages already combine available components to provide general purpose

features. These are introduced in the following sections.

2.2.1 GIS Viewer

The GIS Viewer page allows visualising the geo-localised data available in the platform on

interactive 2D maps and 3D globe. The page is accessed by clicking on

the GIS Viewer entry in the Dashboards menu.

As may be seen on Figure 4, besides the banner at the top, the GIS Viewer occupies the

entire page. The Viewer is implemented with the open-source software OpenSphere whose

technical information may be found at: https://opensphere.readthedocs.io/en/latest/. The tool

includes embedded help information, accessible through the question mark button located in

its upper-right corner.

In this section we explain how data available in the EOPEN Platform may be selected and

visualised on the map. The geo-localised data is stored in a GeoServer instance

pre-configured in the viewer.

Figure 4 – GIS Viewer

https://opensphere.readthedocs.io/en/latest/

D6.4 – EOPEN 2
nd

 Prototype Page 14 PART A – EOPEN User Guide

Proceed as follows to visualise data as layers on the map:

1. Click on the Add Data button located in the upper-left corner of the viewer.

2. In the Add Data dialog box (Figure 6), identify and expand the “EOPEN GeoServer”
source.

3. Toggle the switch next to the layers of interest. The changes are immediately applied.

There no button to accept the changes. Click on the Close button when done.

4. If the Layers floating panel is not visible, click on the Layers button in the banner.

5. The Layers panel lists the selected Feature Layers, Tile (Raster) Layers and the (Base)
Map Layers.

6. In order to focus the map on the data of a certain layer, select the layer in the list,

right-click on it to reveal a popup menu, then select the Go To entry in the menu.

Figure 5 shows the map focusing on a water mask product.

Figure 5 – GIS Viewer: Go To Rice Paddy Mask Layer

Available Data

Geo-localised data available in the EOPEN Platform include the data ingested and generated

by the Pilot Use Cases. Examples are:

 Water body masks (raster and vector) extracted from Sentinel-1 and Sentinel-2 scenes.

 Rice paddy masks (raster, as shown on Figure 5)

 Collected Tweets in different languages and matching each use case (vector/features)

 Weather (temperature, wind, precipitation, …) forecast data (raster)

 Administrative data from Finland (raster and vector)

D6.4 – EOPEN 2
nd

 Prototype Page 15 PART A – EOPEN User Guide

Figure 6 – GIS Viewer: Add Data

Layers Panel

The Layers Panel contains 4 tabs:

 Layers: Lists the pre-configured and the selected layers, organised in three groups:

- Feature Layers: Includes areas drawn on the map, and vector layers (i.e. served via

OGC WFS)

- Tile Layers: Includes the raster layers (i.e. served via OGC WMS and WMTS)

- Map Layers: Includes the pre-configured base maps: a Street Map and a World Map

(satellite imagery) both served by ArcGIS Online.

The layers may be enabled and displayed using check-boxes and may be moved up and

down with the mouse to control in which order they appear on the map.

At the bottom of the panel, an option area allows automatically refreshing the data at a

regular interval.

 Areas: Lists the areas drawn on the map and the closed polygon features converted into

areas. Areas may be selected to filter the features to be displayed on the map. This is

further explained below.

 Filters This tab allows creating and managing advanced filters by combining layers, areas

and feature properties.

 Places: This tab allows creating and managing custom locations.

D6.4 – EOPEN 2
nd

 Prototype Page 16 PART A – EOPEN User Guide

Layer Styling

When a layer is selected in the list several buttons appear at the bottom of the panel:

 A Style button appears. Clicking on this button reveals controls for customising the

appearance of the layer on the map. As can be seen on Figure 7, available controls

include the opacity, brightness and contrast as well as the base colour. If a Feature Layer

is selected, the display size may also be adjusted.

 If a Feature Layer is selected a Label button is also available. This allows selecting

which feature properties must be displayed on the map and how (size and color).

 Controls under the Options button allow configuring how often the layer will auto-refresh

on the screen.

Figure 7 – GIS Viewer: Styling a Layer

Features Filtering

As mentioned above, the features, including vector data, must be selected using custom

areas.

In order to search for features located in a bounding box:

1. Select one or more feature layers from the EOPEN GeoServer.

2. Click on the blue button in the GIS Viewer banner that shows a rectangle. By default, the
selection has the shape of a rectangle. Expand the menu associated to the button to
select other shape types.

3. When the tool is enabled, use the mouse to select an area on the map. A context menu

appears automatically. In this menu select the Load entry. The selected area is added in

D6.4 – EOPEN 2
nd

 Prototype Page 17 PART A – EOPEN User Guide

the list of areas in the Layers panel and the features located in the area are automatically
queried from the server and displayed.

4. It is then possible to select individual features and visualise their properties.

5. If a feature is itself a closed polygon it can be used to define a new area. To do this, select
the polygon, open its context menu (click on the right mouse button) and select

the Add entry.

6. Custom areas are managed via the Areas tab in the Layers panel. In particular, areas may
be renamed, imported and exported, enabled and disabled, etc.

Figure 4, above, shows an administrative region located in Finland (red polygon on the map),

used as an area for filtering Tweets about snow in the Finnish language. One of these

Tweets has been selected and its information displayed in the floating panel located in the

bottom left of the screen.

Figure 8 – GIS Viewer: Feature Selection

This is only a short introduction to OpenSphere. Many more features may be discovered by

using the tool directly.

D6.4 – EOPEN 2
nd

 Prototype Page 18 PART A – EOPEN User Guide

2.2.2 Social Media (Tweets) Viewer

The pre-defined Social Media page allows searching and inspecting the available tweets. It is

accessed through the entry of the same name in the Dashboards menu.

Figure 9 – Social Media

As can be seen on Figure 9, the "Social Media" dashboard integrates a form on the left, a list

of tweets in the centre, and a map on the right.

Tweets Filtering

Use the form to filter the tweets:

1. Select one of the implemented use cases: Flood Events, Snow Cover, and Food Security.

2. Then select a language, the relevant options (only tweets with images, only original

tweets, etc.), and a date range. By default the date range ends on the current day.

3. Optionally, enter a word or a word fragment in the “Find word in tweet …” field.

4. Then click on the Search button.

The tweets matching the search criteria are displayed in the centre. This list is paginated: by

default, each page contains 50 entries. Controls located above the list allow moving to the

previous and next page, and moving back to the first page. The number of the current page

is also displayed. A menu allows changing the amount of entries in a page, between 50 and

500 with steps of 50 entries.

Tweets Information

Each tweet in the list is displayed with the text, an “anonymised” version of the author, and

the creation timestamp.

When a tweet contains an image, a reduced version of it is displayed in the list. Click on a

thumbnail image to obtain a bigger version.

The EOPEN Platform also integrates a location extraction service, which applies to the text,

and a concept extraction service which applies on the images.

D6.4 – EOPEN 2
nd

 Prototype Page 19 PART A – EOPEN User Guide

Extracted locations are displayed by means of a clickable link. When clicked, the interactive

map, on the right, is automatically re-focused on the selected tweets.

Note: When the “Show tweets on map” switch is activated, all the geo-localised tweets are

automatically displayed on the map by means of point markers. Click on a marker to reveal

the tweet text on the map (as shown on Figure 9).

Concepts are extracted from images. These are displayed within “badges”. Currently, these

badges are not active. In a future version of the component, the badges will be clickable and

will allow filtering the tweets based on selected concepts.

2.2.3 Notifications and Instant Messaging

The Notifications Dashboard contains the controls and components that allow users receive

the notifications issued by the applications running in the EOPEN Platform. The integrated

instant messaging system is the open-source (Team Edition) of Mattermost

(https://mattermost.com).

As three Pilot Use Cases (PUCs) are implemented in EOPEN, three dedicated Mattermost

channels have been pre-configured and may be used by the application developers to issue

notifications from within their workflows.

The page, represented in Figure 10, contains at the top three buttons which allow opening

the Mattermost Web Client in a separate window. Each of the three buttons opens

Mattermost on a specific PUC channel (see Figure 11).

The Mattermost Web Client is however fully featured. It thus allows selecting and reading

from any PUC channel, searching for notifications, and issuing new notifications.

The Notifications Dashboard also contains an integrated Mattermost message viewer. It is

currently rudimentary and does not automatically refresh the content nor allows sending new

notifications. The message viewer shows three buttons for selecting the PUC channel of

interest and a “Refresh” button (double-rotating arrows icon, on the left) for refreshing the

content of the viewer.

https://mattermost.com/

D6.4 – EOPEN 2
nd

 Prototype Page 20 PART A – EOPEN User Guide

Figure 10 shows the notifications issued by the Events Detection in Tweets Data service

which is scheduled to run once a day:

Figure 10 – Notifications in the EOPEN User Portal

Figure 11 shows the same notifications displayed in the Mattermost Web Client:

Figure 11 – Notifications in the Mattermost Web Client

D6.4 – EOPEN 2
nd

 Prototype Page 21 PART A – EOPEN User Guide

2.3 Creating Custom Dashboards

As indicated above in the site map section, users may create their own dashboards and

integrate in them any combination of web component already available in the platform.

To create a new dashboard, click on the New dashboard button located in the page banner.

A new page, shown on Figure 12, is displayed asking for the name and the description of the

new dashboard. The name will be used to refer to the dashboard in the Dashboards menu.

Figure 12 – Creation of a New Dashboard

To cancel the creation of the dashboard, simply navigate to another page of the EOPEN User

Portal. Otherwise, enter the dashboard name and description (optional) then click on

the Create button.

The new dashboard is displayed. This contains an empty web component. The banner

shows a new button labelled Edit dashboard and the “Dashboards” menu now includes the

new dashboard:

Figure 13 – New (Empty) Dashboard and the Dashboards Menu

D6.4 – EOPEN 2
nd

 Prototype Page 22 PART A – EOPEN User Guide

Click on the Edit dashboard button to enter the editing mode:

Figure 14 – New Dashboard in Editing Mode

In editing mode, the page displays the following new elements in the banner:

 A Save changes button which, when clicked, stores the new dashboard configuration on

the server and quits the editing mode.

 A Switch to view mode button which allows cancelling the changes and exiting the

editing mode. When this button is clicked, a popup dialog box is displayed warning that all

the modifications will be discarded and asking for confirmation.

 A Hide components button for hiding the components panel (described below) while

remaining in the editing mode. This is particularly useful to obtain a preview of the

dashboard in normal mode.

The “components panel” located on the right side of the page lists the web components

currently available in the platform. Each of these is individually described in section 2.5,

below. Click on a component Add to dashboard button to add a new instance of the

component into the dashboard.

On the dashboards, each component instance shows two controls:

 An X in a red button located in its top-right corner: Click on this button to remove the

component instance from the dashboard.

 An angle icon located in its bottom-right corner. Click and drag this icon to resize the

component.

To re-arrange the components click in its center area and drag it around. A component will

always be pushed upwards until it reaches the top of the dashboard or encounters another

component.

D6.4 – EOPEN 2
nd

 Prototype Page 23 PART A – EOPEN User Guide

Note: Some of the web components present in the list may already be included in one or

more of the System Dashboards. It is for example the case of the Tweets Filter and the

Tweets List. This does not prevent using them in other custom dashboards.

As indicated above, when the configuration of the new dashboard is finished, click on

the Save changes button to store the configuration and exit the editing mode.

From now on, the custom dashboard may be re-opened by selecting its name in the

“Dashboards” menu located in the banner.

2.4 Modifying Custom Dashboards

A custom dashboard created as described in the previous chapter may be modified at any

time by selecting it and then clicking on the Edit dashboard button located in the page

banner.

The custom dashboard then enters the editing mode. Modify the dashboard as described

above then click on the Save changes button to store the new configuration.

2.5 Available Graphical Components

This section introduces each available graphical (web) component.

2.5.1 Tweets Filter

The Tweets Filter component (see Figure 15) is used to filter collected tweets (stored in the

EOPEN Platform) based on various search criteria. It is meant to be used jointly with the

Tweets List component as all the tweets selected using this filter will be automatically

displayed in the list.

Note: This component is present in the Social Media system dashboard (see section 2.2.2).

The tweets are filtered based on the pilot use case, their language, a date range and

optionally on a word that must appear in the tweet message.

In addition, switches allow filtering out the tweets that do not include an image, have been

re-tweeted (i.e. they are not original), or which are considered as fake by the integrated fake

tweets detector.

Clicking on either the start or the end date reveals a calendar in which a new date may be

selected.

Click on the "Search" button to submit the filter and update the tweets in the Tweets List

component described in the following section.

D6.4 – EOPEN 2
nd

 Prototype Page 24 PART A – EOPEN User Guide

Figure 15 – Tweets Filter showing search criteria

2.5.2 Tweets List

The Tweets List component (see Figure 16) displays tweets fetched from the EOPEN

Platform. When combined with the Tweets Filter component, it displays the tweets matching

the selection criteria.

Note: This component is present in the Social Media system dashboard (see section 2.2.2).

The Tweets List component displays the tweets in a paginated list. Controls located at the top

allow selecting the size of each page (between 50 and 500 entries) and navigating between

the pages.

A switch allows visualising the tweets on the Map (Leaflet) component if this is included in

the same dashboard.

D6.4 – EOPEN 2
nd

 Prototype Page 25 PART A – EOPEN User Guide

Figure 16 – Tweets List showing matching tweets

2.5.3 Map (Leaflet)

The Map (Leaflet) component displays an interactive map (implemented with the Leaflet

JavaScript library). It may be used to display simple features on a map.

Currently, only the Tweets List component makes use of the Map (Leaflet) component to

display markers corresponding to the tweets estimated location. Clicking on a marker reveals

the tweet message in a popup box.

Note: This component is present in the Social Media system dashboard (see section 2.2.2).

2.5.4 Topics Filter

Topics here are defined as groups of social media posts (i.e. tweets) that refer to a specific

incident, subject, etc. and are produced by text clustering techniques. The Topics Filter

component is used to select on which tweets collection topic detection will be performed and

it is meant to be used jointly with the Topics List and Topic Tweets List components.

Topics Filter is a simple form where the user is able to first select the use case of interest and

then the collection of interest. By clicking the Get recent topics button, a service searches

D6.4 – EOPEN 2
nd

 Prototype Page 26 PART A – EOPEN User Guide

for trending topics in the 400 most recent tweets of the selected collection and the detected

topics are displayed on the Topics List component.

Figure 17 – Topics Filter

Note: Search for topics in Korean tweets about food security is omitted because their special

characters cannot be handled yet.

2.5.5 Topics List

The Topics List component visualizes the trending topics in the tweets that are collected for

the pilot use cases of EOPEN. When the search for topics, which can be triggered by the

Topics Filter component, is completed, each of the detected clusters is presented as a word

cloud, i.e. an illustration of the most mentioned terms per topic, where their frequency is

shown with font size. Every time a word cloud is clicked, the complete set of tweets that are

contained in the corresponding topic appear in the Topic Tweets List component.

D6.4 – EOPEN 2
nd

 Prototype Page 27 PART A – EOPEN User Guide

Figure 18 – Topics List

2.5.6 Topic Tweets List

The Topic Tweets List component resembles the Tweets List component (see section 2.5.2)

but contains only the posts of a specific topic. When a word cloud from the Topics List

component (section 2.5.5) is clicked, then the Topic Tweets List is refreshed to display the

tweets that the selected topic comprises.

D6.4 – EOPEN 2
nd

 Prototype Page 28 PART A – EOPEN User Guide

Figure 19 – Topic Tweets List

2.5.7 Weather Data Example (Mockup)

The Weather Data Example component contains an interactive chart that displays static data.

It is provided for information purpose as this component (or a variation of it) could be used in

the future to display historical and near real-time data available in the EOPEN Platform.

The mockup displays weather data, as shown on Figure 20, below.

D6.4 – EOPEN 2
nd

 Prototype Page 29 PART A – EOPEN User Guide

Figure 20 – Example Weather Data (Mockup)

D6.4 – EOPEN 2
nd

 Prototype Page 31 PART B – EOPEN Developer Guide

PART B. EOPEN Developer Guide

Abstract

This document is the Application Developer Guide of the EOPEN Platform. Its
purpose is to describe the various features supported by the EOPEN Platform and
made accessible to the authenticated developer users through a standard Web
browser. Each feature is described individually in a dedicated section.

Guidelines are also included to help developers create algorithms and applications.

Code examples included in this Application Developer Guide are written in the
Python 2 scripting language as this is the version still used in the Second EOPEN
Prototype. The Final EOPEN Platform will support Python 3 and the examples will be
updated accordingly in D6.5 “Final system and interactive visualisations”.

Annexes include a glossary of the main terms as well as an inventory of the EOPEN
modules available in the Second EOPEN Prototype (D6.4).

The content of this document is part of the result of the work performed on
T6.2 "EOPEN System Integration".

D6.4 – EOPEN 2
nd

 Prototype Page 32 PART B – EOPEN Developer Guide

History of PART B

Version Date Reason Revised by Approved By

1.0 13-Jan-2020 First release Authors Leslie Gale

1.1 27-May-2020 Second period review comments Authors Leslie Gale

Author list

Organisation Name Contact Information

SpaceApps Bernard Valentin bernard.valentin@spaceapplications.com

SpaceApps Hakim Boulahya hakim.boulahya@spaceapplications.com

SpaceApps Leslie Gale leslie.gale@spaceapplications.com

D6.4 – EOPEN 2
nd

 Prototype Page 33 PART B – EOPEN Developer Guide

Executive Summary of Part B

This document is the Developer Guide of the EOPEN Platform. Its purpose is to describe the
various features supported by the EOPEN Platform and made accessible to the
authenticated developer users, either through a standard Web browser, or an FTP client.

To access the EOPEN Developer Portal navigate to the home page of the Second EOPEN

Integrated Prototype (https://proto2.eopen.spaceapplications.com) and click on the Click here to

access the Developer Platform button:

Figure 21 – EOPEN Portal Home Page (Fragment)

Note: Credentials for authenticating in the EOPEN Developer Portal are created upon
request.

The document describes each individual feature in a dedicated section. An end-to-end
scenario is also included which indicates the logical sequencing of the usage of the features,
from the off-line preparation of custom algorithms to the execution of workflows and the
retrieval of the generated outputs.

This document focuses on the interfaces and the features available to developer users, not
platform administrators.

Document Structure:

 Chapter 1 introduces the EOPEN Application Lifecycle and describes a typical end-to-end

usage scenario that covers all the steps that must be executed to develop a custom

algorithm, import the algorithm in the Platform and integrate it in a workflow, execute the

workflow and access the results.

 Chapter 2 provides a detailed description of each feature implemented in the Platform.

Section 2.1 includes a site map which depicts how each feature is accessed in the Web

interface and how the user may navigate between them.

 Error! Reference source not found. provides the definition of the terms and concepts

sed in the EOPEN Platform.

 Appendix B contains the inventory of the EOPEN modules integrated in the First EOPEN

Prototype. Concretely, modules may have been implemented as processes, services or

workflows, depending on their needs.

 Appendix C instructs on how SNAP graphs designed, tested and exported using the

SNAP Graph Builder tool (integrated in the SNAP Desktop application) must be

https://proto2.eopen.spaceapplications.com/

D6.4 – EOPEN 2
nd

 Prototype Page 34 PART B – EOPEN Developer Guide

transformed into parameterised graphs that may be executed using the command-line

Graph Processing Tool (GPT). This operation is necessary to allow deploying and

executing SNAP graphs within the Platform.

 Algorithms not implemented in Python 2 must be executed similarly, that is using a Python

script to trigger the execution of a process using a system call. This applies for example to

Python 3, R, Java, and binaries (e.g. compiled C/C++ and Go).

 Appendix D gives example algorithms implemented in Python 2 that permit to execute

various processes in the EOPEN Platform.

Main Changes against the First EOPEN Integrated Prototype Platform:

 The Processor and Workflow concepts have been merged in favour of Workflow. This

removes the ambiguity that existed between a resource type (Processor) and its definition

(Workflow).

 A user who creates a Process or a Workflow is automatically registered as its owner. By

default, Processes and Workflows are only visible and may only be managed by their

owner.

 The Workspace and user Role concepts have been introduced to allow sharing resources,

including Processes and Workflows. The fundamental rule is that a particular resource is

only visible by the users who are given a role in one of the workspace the resource

belongs to. To share a resource, a user who has the right to do so assigns that resource

to one or more workspaces.

 The management of the users and their roles in the workspaces is under the responsibility

of the platform administrators. This is thus not covered by the current document as it

focuses on the features provided to the process and workflow developers.

D6.4 – EOPEN 2
nd

 Prototype Page 35 PART B – EOPEN Developer Guide

Abbreviations and Acronyms

AOI Area of Interest

API Application Programming Interface

ASB Automated Service Builder

EO Earth Observation

EOPEN opEn interOperable Platform for unified access and analysis of Earth observatioN

data

ESA European Space Agency

FSM Full Strip-Map

FTP File Transfer Protocol

GDAL Geospatial Data Abstraction Library

GPT Graph Processing Tool

GUI Graphical User Interface

HTTP Hyper-Text Transfer Protocol

JSON JavaScript Object Notation

OGC Open Geospatial Consortium

S1, S2, S3 Sentinel-1, Sentinel-2, Sentinel-3

SNAP Sentinel Application Platform

SpaceApps Space Applications Services

VM Virtual Machine

WFS Web Feature Service

WMS Web Map Service

WPS Web Processing Service

D6.4 – EOPEN 2
nd

 Prototype Page 36 PART B – EOPEN Developer Guide

1 INTRODUCTION

The EOPEN Platform is a tailored and customized version of the ASB framework. Available

features include the possibility to upload custom algorithms, to integrate these algorithms

within new workflows, and to run the workflows in a distributed environment.

This chapter introduces the successive steps to be followed from the local offline

development of an algorithm to the retrieval of the generated outputs from the Cloud

environment.

1.1 The EOPEN Application Lifecycle

Initially defined as the use case life cycle in the proposal, the application lifecycle depicts the

steps to create an operational application (service). It comprises the following steps:

1. Application definition;
2. Data needs definition;
3. Data preparation;
4. Workflow definition and

process modelling;
5. Evaluation (Verification

and Validation);
6. Deployment;
7. Optimisation;
8. Operations;
9. Termination.

Figure 22 – EOPEN Application Lifecycle

Steps 1 to 5 are performed to establish the concept and validate the models and verify the

concept achieves the goals of the application. With respect to the EOPEN platform these are

most often performed offline to EOPEN with the developers working on PCs and local

servers using example data sets. These activities can however influence the eventual

deployment of the concept to create an operational service. For instance the data may only

be available on certain platforms, or by choice processing should be performed on a platform

where the data is hosted to avoid excessive transfers of data.

Once the concept is verified and validated Steps 4 to 6 are performed using the EOPEN

Platform. In general an application will comprise one or more algorithms organised in a

workflow. The developer imports the algorithms into the EOPEN platform and using the

designed workflow configures the imported algorithms using the workflow editor.

Some terminology is unavoidable. To avoid discussions on what is an application, what is a

process ..., the following terminology is used:

 Process – A Process is a Dockerised Algorithm. A Process definition includes a name,

description, and version, as well as (typed) input and output parameters, and software and

hardware dependencies. The typed inputs and outputs allow ensuring the compatibility of

the parameters inter-connected in the workflows. The EOPEN Developer Platform comes

with a Process Import Tool that automates the packaging and the registration of custom

processes in the system.

D6.4 – EOPEN 2
nd

 Prototype Page 37 PART B – EOPEN Developer Guide

 Workflow – A Workflow implements a application by specifying the processes that must

be executed together with their inter-connections (data flow). The EOPEN Developer

Platform includes a graphical Workflow Editor for creating workflows interactively,

e.g. selecting the appropriate processes and connecting parameters with drag-&-drop.

Workflows may be executed on-demand, scheduled or externally triggered. The platform

automatically generates the parameterization forms that allow giving values to

unconnected input parameters. EOPEN includes interfaces for monitoring and control,

reporting and data access.

Additional concept definitions are provided in Error! Reference source not found. of this
ocument.

Step 6, Deployment, is fully automated.

Initially Step 7, Optimisation, is not performed. It may also not be necessary prior to

transferring to operation if no performance issue is detected. However should performance

be an issue, or a shift to HPC is considered for instance then some re-organisation of the

workflow may be needed. Another example is the use of SNAP. Experience shows that by

breaking down a SNAP graph into sub-graphs leads to a substantial increase in

performance. A developer may choose to do this right from the start, or after confirming the

application is performing as expected.

Step 8, Operations, is in most cases performed in multiple stages. The first execution of the

user application, execution of the Workflow, will be performed to reverify and revalidate the

application. Once this is completed then the application is ready for operations.

Step 9, Termination, is performed to end the use of the application with the eventual off-line

archiving of the results (output products). In the case of an EOPEN application this will follow

the principles set out in the Data Management Plan.

1.2 End-to-End Usage Scenario

This section explains the steps that an application developer follows to make an application

operational on the EOPEN platform. To perform the tasks EOPEN provides a Web-based

user interface which is described in details in the next chapter. The table below introduces

each step and refers to the detailed descriptions.

Lifecycle Step EOPEN Platform

Steps 1 to 5 –

Concept Phase

Application Concept Development

The EOPEN platform does not restrict the application developer in

their choice of programming language, toolbox or libraries. Examples

of the implementation can be a Python script using the GDAL for

processing satellite imagery which can be tested on a local machine,

or a SNAP graph edited and executed using the Graph Builder

included in the SNAP Desktop application.

When the application is considered ready, it may be imported in the

framework.

D6.4 – EOPEN 2
nd

 Prototype Page 38 PART B – EOPEN Developer Guide

Steps 4 to 8 –

Pre-operational

Importing the developed algorithms

Developed algorithms must be imported in the framework using the

Process Import Tool. This is a three steps process, as further

described in section 2.5.7:

 Generation of a process wrapper template.

 Local editing of the template to bind with the developed algorithm.

 Import of the edited process wrapper together with the process

files.

Configuring a new workflow

Imported processes must be integrated in the workflow of pre-existing

or new workflows before being executed. To do so, the Workflow

Editor is used to create and edit workflows, integrating and

inter-connecting processes in a graphical manner (see section 2.6).

Conclusion of the pre-operational phase is the execution of the

workflow as described in Step 8 – Operational.

Step 8 –

Operational

Executing the workflow

A workflow may be executed on-demand, through the Service web

interface. If the workflow has unconnected inputs, these are used to

automatically generate a parameterization form, as described in

section 2.6.4.

Alternatively, the platform proposes to schedule the differed execution

of the selected workflow. A form allows configuring a single deferred

execution or multiple executions triggered at regular interval or on

specific days in the month. The scheduler pages and controls are

described in section 2.6.5.

Monitoring the workflow execution and accessing the results

Workflow executions are displayed in two pages: the Recent

Executions page and the Execution History page. The first page

displays the recent (started in the last 24 hours) and the on-going

executions. The second page displays all the completed executions

without age limit. See section 2.6.6.

After the successful execution of a workflow, an Execution Report

becomes available. This includes the execution metadata, the user-

specified input parameters (bounding box, time range, scene

identifiers, and other specific input values), the list of outputs and

generated product files, and if available quicklooks of the output

product. The page also includes the graphical representation of the

workflow graph and a Gantt chart showing the times at which each

task in the workflow has been executed. See section 2.6.7.

D6.4 – EOPEN 2
nd

 Prototype Page 39 PART B – EOPEN Developer Guide

2 THE EOPEN DEVELOPER PORTAL

This chapter describes the user interface of the EOPEN Platform for the application
developers. Next section gives an overview of the available pages and the principal
navigation links. The remaining of the chapter describes the pages, the operations and the
related Platform behaviour.

2.1 Site Map

Figure 1, above, shows the structure of the Platform user interface. Each box represents a

Web page and the arrows show the navigation between the pages. Not all navigation links

are represented, however. For example, logging out on any of these pages redirects the user

to the EOPEN Developer Portal Home Page (grey box on the left).

Figure 23 – EOPEN Developer Portal Site Map

D6.4 – EOPEN 2
nd

 Prototype Page 40 PART B – EOPEN Developer Guide

2.2 Home Page

The EOPEN Developer Portal Home Page (https://proto2.eopen.spaceapplications.com) is the

only page accessible to non-authenticated users. The page body informs about the EOPEN

project and the Automated Service Builder (ASB) framework on which the EOPEN Platform

is built. It shows in its banner a link for logging-in.

Figure 24 – Home Page for Non-Authenticated Users

Click on the Log in link to open the User Authentication Form.

2.3 User Authentication

The User Authentication Form is displayed when the Log in link located in the page banner is

clicked. The form lets you enter your name and password. The Go back to the home page

link allows aborting the login process and navigating back to the EOPEN Developer Platform

Home Page.

https://proto2.eopen.spaceapplications.com/

D6.4 – EOPEN 2
nd

 Prototype Page 41 PART B – EOPEN Developer Guide

Figure 25 – User Authentication Form

After a successful authentication, the browser is redirected to the EOPEN User Portal. Click

on the Developer Portal button to navigate back to the Developer Portal.

2.4 Header Panel

Once authenticated, the top part of the Web pages is extended with links and menus that

give access to the different features of the platform:

Figure 26 – Header Panel

The header panel provides the following elements:

Label / Icon Target Section

The EOPEN icon EOPEN Developer Portal home page 2.2

Processes Processes Management pages 2.5

Workflows Workflows Management pages 2.6

Schedules Schedules Management pages 2.6.5

Executions Executions Inspection pages 2.6.6

D6.4 – EOPEN 2
nd

 Prototype Page 42 PART B – EOPEN Developer Guide

Label / Icon Target Section

<user-name> Menu with the following entries:

 Your Profile

 Settings

 Logout

2.5 Processes Management

2.5.1 Process Development Lifecycle

A Process, and more specifically a Process Version, is a single unit of execution. Custom
processes and versions may be added in the platform by the developers by executing the
following steps, depicted on Figure 27 – Process Development Lifecycle, below:

1. Create a process in the platform (section 2.5.3).

This is an initialisation step required to declare the process and start working on it.

2. Create a new process version (section 2.5.4).

Initially, a process version has no implementation files. These must be uploaded in a
following step. Concretely, it means the process version may not be built and released
yet. Its status is “Unreleased”.

3. Generate and prepare a process wrapper script (section 2.5.5).

A process wrapper script acts as an adapter between the service interface that will
allow executing the process remotely and the process implementation files. This step
is not represented in Figure 27.

4. Upload the wrapper script and the process implementation files (section 2.5.6).

This is an interactive step. Files can be added and overwritten until all the files
required to implement the process have been uploaded. As long as no valid wrapper
script (whose name must be process_wrapper.py) has been uploaded the status

of the process version remains “Unreleased”. As soon as a valid wrapper script has
been uploaded, the status changes to “Buildable”.

Note: Importing and testing processes in the EOPEN platform is not as straightforward
as executing a Python script offline, on a local system. It is thus advised, in order to
same time, to test new algorithms locally before importing them in the platform. Ideally
the test should involve the wrapper script as well. This is further described in
section 2.5.10.1.

5. Build the process version (section 2.5.7).

At this step, the process version implementation files are packaged and tested and a
dry-run of import is performed. This step is important to determine if the uploaded files
can be compiled and loaded to start serving a processing service.

If the build is not successful, new implementation files may be added or replaced
before trying a new build.

If the build is successful, the status of the process version becomes “Releasable”. At
this point, it is still possible to add or replace the implementation files.

6. Release the process version (section 2.5.8).

D6.4 – EOPEN 2
nd

 Prototype Page 43 PART B – EOPEN Developer Guide

7. At this step, a build is performed again and the resulting package is registered in the
platform as an executable process. From this point, the status of the process version
becomes “Release” and no changes may be applied to the implementation files
anymore. The process version may be selected and integrated in Workflows (see
Workflows Management in section 2.6, page 60).

Figure 27 – Process Development Lifecycle

At any time a process may be shared (with all its existing and future versions) with other
platform users by adding it to one or more workspaces. Instructions to do so are provided in
section 2.5.9.

The following sections further describe each of the process management tasks.

2.5.2 Processes Management Page

The Processes Management Page, titled Processes, gives access to the tools for creating,

configuring and sharing processes.

As can be seen on Figure 28, the page contains the following elements:

 A table of existing processes (accessible by the authenticated user).

 Each process is prefixed with the name of its owner that is the user who has created it.

Different user names may be present in the list as processes can be shared among

users (see section 2.5.9).

 A field for applying a textual filter on the table

 A New process button for creating a new process

Click on a process name to navigate to the Process Management Page as described in the

next section.

D6.4 – EOPEN 2
nd

 Prototype Page 44 PART B – EOPEN Developer Guide

Figure 28 – Processes Management Page

2.5.3 Creation of a New Process

Clicking on the New process button reveals a popup dialog box which asks for the name of

the new process (see Figure 29). The process name is a free text that will be used to identify

the process in the user interface. At the same time the name is entered, a “slugified” version

of it is generated automatically and displayed in a second input field. It is in principle not

necessary to edit this generated identifier but should it be necessary, care must be taken to

enter an identifier that only contains lowercase characters, dashes and digits.

Figure 29 – Creation of a new Process

Enter valid values then click on the Create process button to create the process. You are

automatically redirected to the Process Management Page:

D6.4 – EOPEN 2
nd

 Prototype Page 45 PART B – EOPEN Developer Guide

Figure 30 – Process Management Page

On the screen, the process name is always prefixed with the name of its owner.

The Process Management Page also contains the following elements:

 A Share this process button for configuring in which workspaces the process should be

accessible (see section 2.5.9).

 A New wrapper button for generating a process wrapper script (see section 2.5.5).

 A New version button for creating a new version of the process (see section 2.5.4).

 The currently associated workspaces (not displayed if the process is not shared)

 A drop-down list with the existing process versions. Selecting a version in the list reveals

information about the version as well as buttons for managing that version, as will be

explained in the next section.

2.5.4 Creation of a new Process Version

In order to create a new process version, navigate to the related Process Management Page.

The page includes the list of existing Process Versions in a drop-down list and

a New version button. Click on this button once reveals a Click again … button. Click on it

to confirm and start working on a new process version.

As shown on Figure 32, the process version has the status “Unreleased”. The page now

shows an area for uploading the process version implementation files. Its usage is described

in section 2.5.6.

D6.4 – EOPEN 2
nd

 Prototype Page 46 PART B – EOPEN Developer Guide

Figure 31 – Process Management Page with New Version Confirmation Button

Figure 32 – Process Management Page with Selected Version

2.5.5 Generation of a Process Wrapper Script

For each process version to be imported in the platform, it is necessary to generate a

corresponding process wrapper script. This script acts as an adapter between the platform

and the actual process implementation.

The creation of a wrapper script is facilitated by the Process Wrapper Script Generation page

which may be accessed by selecting a particular process version and clicking on

the New wrapper button.

The page, represented on Figure 33, allows generating a preliminary version of the script.

This must be downloaded and edited locally to include the call to the process algorithm (or to

include the algorithm itself). The input parameters received by the wrapper function must be

passed to the algorithm and the algorithm outputs must be returned by the wrapper function.

D6.4 – EOPEN 2
nd

 Prototype Page 47 PART B – EOPEN Developer Guide

Passing the input and output parameters must be performed in the appropriate manner, that

is, according to the rules of the Python language.

The Process Wrapper Script Generation page is divided in two parts:

 The left panel is occupied by a form that allows configuring the process. In particular, it

allows declaring the list of input and output parameters, the software dependencies and

the hardware dependencies.

 The right panel contains the generated wrapper script. This is dynamically updated each

time a modification is applied in the form on the left. For example, when a new input

parameter is added in the form, this is inserted as an input to the execute functions, and

when a new output parameter is added, a corresponding variable is created and initialised

in the function, and included in the returned dictionary.

Figure 33 – Process Wrapper Script Generation Page

D6.4 – EOPEN 2
nd

 Prototype Page 48 PART B – EOPEN Developer Guide

The Process Wrapper Script Generator page displays the following elements:

 Definition of the input parameters.

Click on the ADD INPUT button to declare a new input parameter.

Give a name and optionally a default value to each input in the list and associate them to

a data type.

 Definition of the output parameters.

Click on the ADD OUTPUT button to declare a new output parameter.

Give a name to each output in the list and associate them to a data type.

 Select in this panel the main software product required to run the algorithm. For example,

select "R Interpreter and Libraries" if at least part of the algorithm is implemented in the R

scripting language, or select "SNAP + Sentinel Toolbox v7.0" if the algorithm makes use

of the SNAP command line tools (including GPT and Snappy).

 Select here the additional software packages your algorithm depends on. Python 2 is

install by default in all process Docker images. Several entries may be selected but, for

example, it doesn't really make sense to install more than one version of the Java runtime

environment. The selected packages will be installed in the process Docker image at

import time. The amount of selected dependencies thus impacts the time required to build

these images.

 Indicate here the minimum amount of hardware resources required to run the process.

The process will not be deployed and executed in a node that has less than the required

resources available. If more resources than required are available (e.g. 4 CPUs required

but 8 available), the process will have the possibility to use them.

 The right half of the page shows the dynamically generated process wrapper template.

This is updated automatically when new values are entered or selected in the form on the

left.

 The Download wrapper button triggers a download of the process wrapper template.

This is named "process_wrapper.py" by default. Depending on the Web browser

configuration, the download happens automatically or the target location is asked at first.

Enter the necessary information in the form then click on Download wrapper to save the

generated process wrapper template next to your algorithm files (if any).

Important: The name of the file (process_wrapper.py) must be preserved otherwise it

will not be recognized as a wrapper script at import time.

Edit the "process_wrapper.py" file and add within the "execute" function the Python 2

code that takes the function input values, run your algorithm, and returns the execution

results. If the code of the algorithm is short enough, it may be directly integrated within the

"execute" function.

When this is done, the algorithm files and the "process_wrapper.py" file should be tested

locally (see section 2.5.10.1) then uploaded in the platform. These operations are described

in the next sections.

2.5.6 Upload of the Process Version Implementation Files

When a process version is selected in the Process Management Page the page displays a

panel titled “Files” (see Figure 32). The panel contains a "drop-off" zone that allows to drag

D6.4 – EOPEN 2
nd

 Prototype Page 49 PART B – EOPEN Developer Guide

and drop the process version implementation files directly on the page. Alternatively, clicking

on the zone opens a dialog box that allows navigating and selecting the files to upload.

Each time one or more files are dropped or selected for upload, these are sent to the server

where they are analysed. If one of these files is named process_wrapper.py and contains

a process wrapper script, this is parsed and the process properties extracted. A Docker

image build file (Dockerfile) is generated using this information.

Note: Several files, organised in a folder hierarchy may be uploaded as well. Instructions to

do so are provided in section 2.5.10.9.

When a valid process_wrapper.py file is uploaded, possibly with additional

implementation files, new tabs become available:

 Build: Use this tab to package the files and release the process version in the platform as

explained in sections 2.5.7 and 2.5.8 (Figure 35).

 Properties: Use this tab to visualise the process version metadata (encoded in JSON) as

extracted from the process_wrapper.py file (Figure 36).

 Dockerfile: Use this tab to inspect the Dockerfile generated according to the process

properties and more specifically the software dependencies (Figure 37).

Figure 34 – Process Version showing the uploaded files

D6.4 – EOPEN 2
nd

 Prototype Page 50 PART B – EOPEN Developer Guide

Figure 35 – Process Version showing the Build panel

Figure 36 – Process Version showing the process properties (truncated)

D6.4 – EOPEN 2
nd

 Prototype Page 51 PART B – EOPEN Developer Guide

Figure 37 – Process Version showing the generated Dockerfile (truncated)

2.5.7 Building the Process Version

To build a new process version, navigate to the related Process Management page, select

the version to build in the drop-down list then click on the “Build” tab. The build panel is then

displayed as shown on Figure 35.

Note that this tab is only accessible if a valid process wrapper script has been uploaded, as

explained above.

The “Build” tab contains a Build button. Clicking on it starts a build and a release dry-run.

As can be seen on Figure 38, the page displays messages that inform about the progress of

the dry-run steps. The messages are pushed from the server to the browser and thus appear

automatically in real-time.

The build operations may take some time, varying with the amount of software dependencies

selected in the Process Wrapper Script Generation page. Each additional software

dependency represents one or more installation operations to be added in the build script of

the target Docker image.

D6.4 – EOPEN 2
nd

 Prototype Page 52 PART B – EOPEN Developer Guide

Figure 38 – Building a Process Version (on-going build)

If the build or the release dry-run fails, the panel turns red and a description of the error is

displayed, as shown on Figure 39:

Figure 39 – Building a Process Version (failed build)

D6.4 – EOPEN 2
nd

 Prototype Page 53 PART B – EOPEN Developer Guide

If the dry-run import is successful, a green panel is displayed, as shown on Figure 40:

Figure 40 – Building a Process Version (successful build)

Upon successful build, the status of the Process Version changes from “Buildable” to

“Releasable”. This means the Process Version and its implementation files are ready to be

imported in the platform and be integrated in Workflows.

2.5.8 Releasing a Process Version

A process version with a valid wrapper script and which successfully passed the build and

release dry-run is “Releasable”. At this time, it is still possible to upload new implementation

files (or new versions of existing implementation files). Doing so “downgrades” the process

version status back to “Buildable” as a new dry-run is necessary to ensure the process

version and its implementation files are valid.

To release a new process version, navigate to the related Process Management page, select

the version to release in the drop-down list then click on the “Build” tab.

The “Build” tab contains a Build button and an associated menu, as shown on Figure 41.

Expand the menu and select the Build & Release entry. A build is started again and if

successful the process version is imported and registered in the platform. Its status becomes

“Released” and from now on it is not possible anymore to modify its implementation files.

D6.4 – EOPEN 2
nd

 Prototype Page 54 PART B – EOPEN Developer Guide

Figure 41 – Releasing a Process Version

Once release, a process version may be selected and integrated in processing Workflows, as

described in section 2.6.2, below.

2.5.9 Process Sharing

By default, a Process is only visible and usable by its owner, that is, the user who created it.

In order to share a Process with other platform users, this must be added in a workspace

accessible by these users (that is, a workspace in which they have a role).

In the following example, user “eopen” wants to share his Process “Example EOPEN

Process” with the users who are given access to workspace “EOPEN”.

As can be seen on Figure 42, the process is not yet assigned to any workspace. To do this,

click on the Share the process button. A popup dialog box appears. This allows selecting

the workspace(s) the process must be assigned to. Workspaces must be selected in a

drop-down list. Once selected, a workspace may be removed by clicking on its “X” icon. The

sequence of operations is depicted in Figure 43.

D6.4 – EOPEN 2
nd

 Prototype Page 55 PART B – EOPEN Developer Guide

Figure 42 – Process Management Page

Figure 43 – Process Sharing Operations

To cancel the changes, click on the “X” icon in the top-right corner or simply click outside the

dialog box. Click on the Share process button to apply the changes and close the box.

D6.4 – EOPEN 2
nd

 Prototype Page 56 PART B – EOPEN Developer Guide

2.5.10 Process Implementation Guidelines

The following sections provide hints and guidelines for implementing processes. The tool for

building new process versions is not currently verbose in describing what is causing an error

during the actual import operations. The guidelines also helps indicating what could have

been wrong in case of error.

2.5.10.1 Testing Processes Off-line

The import mechanism (during the dry-run and the actual import) includes the generation of a

Docker image, the instantiation and execution of an instance of it (as a container), and the

verification that the imported process is present in the offerings on the embedded OGC WPS

service. This requires the process_wrapper.py file to be imported and parsed by the

Python interpreter. If the Process Import Tool complains that the process cannot be found,

the most probable cause is that the process wrapper file could not be imported. This may be

due to a syntax issue (such as invalid indentation), or the import of a missing library or

module.

It is thus advised, in order to prevent most of the errors that may occur at import time, to at

first try to import and execute (if the dependencies are available), the wrapper code locally, in

a controlled environment.

Example of local execution:

Python 2.7.14 (default, Oct 12 2017, 15:50:02) [GCC] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from process_wrapper import execute

>>> execute('/tmp', 'ignored')

{'events': {u'events': []}}

2.5.10.2 All Input Parameters are Strings

The Process Import Tool requires each input and output parameter to be associated to a data

type. This data type is used by the platform to verify whether the inter-connected parameters

in the workflows are compatible or not. For example, the Workflow Editor will allow

connecting two parameters of the same type (object, string, date, etc.) or an output of type

string with an input of type object (as a string is an object), but not an output of type object

with an input of type string (as an object is not necessarily a string).

In case of doubt, selecting "User String" is a safe default choice.

The data type of the process parameters is however not used in the processes themselves.

Concretely, all the inputs to the execute(…) function in the process wrapper module are

passed as strings.

It is up to the developer to convert (in a safe manner) the input values to their expected

datatype.

D6.4 – EOPEN 2
nd

 Prototype Page 57 PART B – EOPEN Developer Guide

For example:

Testing the type of a variable

value_type = type(any_value)

Convert string to integer

int_value = int(string_value)

Convert string value to float

float_value = float(string_value)

Convert any Python structure (including arrays and dictionaries)

Note: this is potentially dangerous at string_value is interpreted

parsed_value = eval(string_value)

2.5.10.3 Importing Python Libraries

The process wrapper module may require additional libraries and modules to be imported

depending on the processing needs. As the Python language permits it, the import

statements may be added either in the main context (i.e. at the top of the file according to the

official recommendations), or within code blocs.

Importing at the top of the file permits to verify that the imported element (library, module,

function, etc.) is indeed available within the Docker image. If the import statement is

located, for example, within the execute(…) function, this will not be evaluated at process

import time but when the process will be deployed and executed during a workflow

execution. In this case potentially missing dependencies will be detected at execution time

instead of process import time.

2.5.10.4 Importing and Using GDAL Libraries

Note about GDAL libraries: in the recent versions of the GDAL Python bindings, direct import

of the GDAL libraries has been removed. This is shortly explained here:

https://pypi.org/project/GDAL/. As of writing this guide, GDAL version 2.4.0 is installed when the

dependency is selected in the Process Import Tool.

The following code fragment shows the proper way to import GDAL libraries that is through

the osgeo package:

Before:

#import gdal

#from gdalconst import *

#from osgeo import osr

Now:

from osgeo import gdal

from osgeo.gdalconst import *

from osgeo import osr

2.5.10.5 Using SNAP 7 Tools GPT and Snappy

In this second EOPEN platform prototype the version of the Sentinel Application Platform

SNAP (https://step.esa.int/main/toolboxes/snap/) has been upgraded from version 6 to version 7.

This release uses a new version of the Java virtual machine that has better compliancy with

the containerisation technology.

The version of SNAP available at the time this document has been produced is 7.0.0

(22.07.2019 13:30 UTC) originating from: https://step.esa.int/main/download/snap-download/

https://pypi.org/project/GDAL/
https://step.esa.int/main/toolboxes/snap/
https://step.esa.int/main/download/snap-download/

D6.4 – EOPEN 2
nd

 Prototype Page 58 PART B – EOPEN Developer Guide

To use SNAP 7 in a process, select SNAP Sentinel-1/2/3 Toolbox v7.0 + Snappy as Main

Dependency in the Process Wrapper Script Generation page. This translates into the

following entry in the wrapper script:

 Main Dependency:

 snap_sen_tbx-7.0

The use of GPT and Snappy in SNAP version 7 remains unchanged compared to

version 6.0. An example process wrapper script that uses GPT is provided in Appendix D.1,

page 93.

2.5.10.6 Using the Local Folder

The files that are imported via the Process Import Tool are located in folder

/var/www/wps/processes in the Docker images. This is not the working folder of the

Python interpreter that runs the OGC WPS service which means trying to access a local file

from a Python script without providing at least a path fragment will not work.

For example, consider a file settings.json uploaded together with

process_wrapper.py and loaded by the latter. The following code will fail because the

JSON file cannot be found:

Read process settings from JSON file

with open('settings.json') as settings_file:

 data = json.load(settings_file)

The following error is raised at execution time:

IOError: [Errno 2] No such file or directory: 'settings.json'

The absolute path to the file must be included, as follows:

Read process settings from JSON file

with open('/var/www/wps/processes/settings.json') as settings_file:

 data = json.load(settings_file)

Note that this absolute path is also available in environment variable WPS_PROCESSES.

2.5.10.7 Using the out_dir Folder

The execute(…) function defined in each process wrapper receives an out_dir

parameter. For example:

def execute(out_dir, startdate, enddate, writelogfile='False'):

 pass

This parameter is given the absolute path to the folder whose content is persisted after the

completion of the process. Any file or folder located outside this folder will be lost.

out_dir must be used to save the files that are needed by the processes connected

downstream in the workflow. In that case, the process that stores a file must output its path

(and file name as appropriate) and pass this value to the next processes through connected

parameters.

Please note that the path is edited automatically and is not the same inside and outside the

processes execution environment. It is thus important to pass them through output/input

parameter connections.

Files stored in out_dir are accessible by the users after the completion of the related

workflow through the Execution Report page, as explained in section 2.6.7, page 81.

D6.4 – EOPEN 2
nd

 Prototype Page 59 PART B – EOPEN Developer Guide

2.5.10.8 Using the Public (Shared) Volume

The files downloaded or generated by a process are only accessible by the other processes

of the same workflow execution (and by the users via the Execution Report pages). If one or

more files need to be read by other workflows, they must be stored within a shared volume

provided for that purpose. This volume is mounted on /data/public in the process

execution environment.

The volume does not reproduce the processor-run-xxx/wps-run-yyy folder hierarchy

as it is the case when using the out_dir value (see Figure 63, page 82). Any process can

read and write files within any folder and sub-folder in the volume.

Although it is not mandatory, it may be good practice to organise the files in sub-folders for

example depending on their type (Sentinel data, in-situ data, Level 1, Level 2, water mask,

etc.) or the context in which they have been downloaded or generated. The creation of the

folder hierarchy is the responsibility of the processes that produce or consume these files.

The path to the files may be transmitted through connected parameters (between processes

of the same workflow), provided as workflow input parameter, or agreed between the process

developers.

2.5.10.9 Importing a Folder Hierarchy

As explained in section 2.5.10.6 all the files imported using the Web interface of the Process

Import Tool are located in the same folder in the generated Docker image

(in /var/www/wps/processes). Archive files (tar and tar.gz files) may also be

uploaded for importing a big amount of files or a folder hierarchy as these are automatically

unpacked in the generated Docker images.

For example, importing a tar file with the following content:

appfiles/__init__.py

appfiles/utils.py

allows importing the appfiles/utils.py module in a process wrapper as follows:

Importing the whole utils module

from appfiles import utils

Importing a particular function

From appfiles.utils import utility_function

This mechanism is not limited to Python packages. Any files required by the process may be

included in the Docker image using tar file.

2.5.10.10 Using the Python Logger

The Python logging module is configured to store in a file the log traces generated by the

process modules. Each executed process generates a log file that is made available in the

corresponding logs folder accessible through the Execution Report pages.

By default, the logging level is set to DEBUG. This may be changed programmatically as

shown in the example, below.

D6.4 – EOPEN 2
nd

 Prototype Page 60 PART B – EOPEN Developer Guide

Use the Python logger in the usual manner, as follows:

import logging

logger = logging.getLogger(__name__)

Change the loggging level, if necessary

logger.set….

Log info, warning, error, debug messages

logger.info('Execution started')

logger.warning('Something may be wrong')

logger.error('Something went wrong')

logger.debug('Received the following data from the service: %s', data)

Should it be necessary, the advanced functions of the logging module may be used as

described in the Python documentation: https://docs.python.org/2.7/library/logging.html.

2.5.10.11 Main versus Software Dependencies

The Process Wrapper Template Generator page of the Process Import Tool allows selecting

a Main Dependency as well as a number of Software Dependencies. Because the software

dependencies are installed in the Docker images at the process import time, the complete

operation may last several minutes. And the more individual software dependencies are

selected, the longer is the Docker image building step.

To mitigate this, a number of "main dependencies" are proposed. Each of these correspond

to a pre-built Docker image that already contains a number of software packages and that

may be used as parent for the process image.

For example, selecting the "SNAP Sentinel-1/2/3 Toolbox v7.0 + Snappy" image allows

saving the time to download, install and update the SNAP software in the process image.

The same applies to the "R interpreter and libraries" image which already contains all the

tools necessary for executing R scripts.

2.6 Workflows Management

Selecting the Workflows tab in the header leads you to the Workflows Management page. As

shown on Figure 44, the page shows in a table your own workflows as well as the workflows

you are allowed to access, depending on the workspaces configuration (as explained in

section 2.6.8 “Workflow Sharing”).

An input field located above the table allows filtering the workflows. Next to it,

a New workflow button allows creating a new workflow (as described in the next section).

Each row in the table includes the following elements:

 The owner (creator) of the workflow

 The workflow name

 An Edit Workflow button leading to the Workflow Editor (see section 2.6.2)

 A Schedule button for configuring unattended execution(s) in the future (see

section 2.6.5)

 A Execute button for initiating an on-demand (immediate) execution (see section 2.6.4)

https://docs.python.org/2.7/library/logging.html

D6.4 – EOPEN 2
nd

 Prototype Page 61 PART B – EOPEN Developer Guide

Figure 44 – Workflows Management Page

2.6.1 Creation of a New Workflow

Clicking on the New workflow button reveals a popup dialog box which asks for the name of

the new workflow (see Figure 45). The workflow name is a free text that will be used to

identify the workflow in the user interface. At the same time the name is entered, a “slugified”

version of it is generated automatically and displayed in a second input field. It is in principle

not necessary to edit this generated identifier but should it be necessary, care must be taken

to enter an identifier that only contains lowercase characters, dashes and digits.

Figure 45 – Creation of a new Workflow

Enter the requested information then click on the Create workflow button. You are

automatically redirected to the Workflow Management Page (see Figure 46).

On the screen, the workflow name is always prefixed with the name of its owner (creator).

D6.4 – EOPEN 2
nd

 Prototype Page 62 PART B – EOPEN Developer Guide

Figure 46 – Workflow Management Page

2.6.2 Workflow Editing

Workflows created as described in the previous sections cannot be executed as they do not

include any process yet. In order to configure a workflow, navigate to the Workflows

Management Page, identify the workflow to be edited, then click on its

associated Edit Workflow button. Doing so reveals the Workflow Editor, as shown on

Figure 47.

Figure 47 – Workflow Editor

The Workflow Editor displays the following elements:

 Workflow identifier and version

 Use this search box to filter the list of available processes

D6.4 – EOPEN 2
nd

 Prototype Page 63 PART B – EOPEN Developer Guide

 List of available processes. A colour code is used to make a distinction between the

processes implemented as snippets (e.g. Python functions embedded in the workflow

engine), processes implemented as OGC WPS processes, and processes that have a

special purpose such as the Splitter and the Joiner tasks.

Moving the mouse pointer on an entry in the process list reveals two icons:

 Click on the "i" icon to open a modal dialog box that provides detailed information

about the process and its parameters:

 Click on the "+" icon to add a new instance of this process in the canvas.

 Workflow design canvas.

Selected processes appear in the upper-left corner of the canvas. Use the mouse to drag

them to the appropriate location. The canvas height adapts automatically to show the full

height of the workflow.

Use the mouse to connect a process output parameter to the input parameter of another

process. The editor verifies automatically whether the connected parameters are

compatible, that is, if the output parameter data type is the same or a sub-type of the input

parameter data type. If the parameters are not compatible, the editor displays an error

and the connection is not realized.

To remove a connection, use the mouse to drag the arrow end to a location in the canvas

where there is not parameter to attach.

To remove a process instance from the canvas, select this instance and click on the "x"

icon located in its upper-right corner. A confirmation is asked before proceeding with the

actual deletion.

The vertical arrangement of the processes has an impact on the user parameterization

form: The form list the unconnected inputs according to the vertical position of the

corresponding processes.

Any change made in the canvas (process positioning, connection creation and removal) is

automatically saved in the Knowledge Base.

D6.4 – EOPEN 2
nd

 Prototype Page 64 PART B – EOPEN Developer Guide

 Process details panel showing the inputs/outputs of the selected process.

Each process input parameter has a label, default value, visibility flag and "editability" flag

configured in its generic definition. In the context of a specific workflow, or a specific

instance of the process in a workflow, the default properties may not be appropriate.

The form located in the process details panel

allows customizing the above properties for

each process instance included in the

workflow. It is for example possible to change

the label of an input parameter that is then

displayed in the user parameterization form.

It is also possible to give a custom default

value to an input parameter and prevent the

user to change it (unchecking

the Editable flag) or even hiding the

parameter completely (unchecking

the Visible flag).

Altered parameters are highlighted in pink.

Click on the Save changes button to

persist the changes. The User Form Preview

is then updated to reflect the custom

parameter properties.

 The User Form Preview panel shows a

preview of the user parameterization form. It

uses the vertical order of the processes in

the canvas to sort the form fields. It also

takes into account the generic and the

altered parameter properties (label, default

value, etc.) to generate the form.

When the workflow is configured it may be executed manually using the Workflows

Management Page. This is described in the next section.

2.6.3 Workflow Configuration Guidelines

The EOPEN Platform comes with built-in functions that may be integrated in the workflows to

obtain specific behaviours. Functions and processes are selected and integrated within

workflows in exactly the same manner. The only visible difference in the editor is the

background colour: functions are coloured in light blue and processes in light purple.

The following sections describe the purpose of the built-in functions and provide hint for their
usage.

2.6.3.1 Inputs De-duplication using Pass-Through Functions

The workflow parameterisation forms are dynamically generated and contain an input field

for each input parameter in the workflow graph that:

 is not connected to an output parameter of an upstream function or process

 and is not configured as hidden (i.e. un-checking the Visible flags in the workflow editor).

D6.4 – EOPEN 2
nd

 Prototype Page 65 PART B – EOPEN Developer Guide

If the workflow contains several processes that expect the same value, this leads to a

parameterisation form in which the user will have to provide the same value several times. To

avoid this situation, "pass-through" built-in functions may be used to pass without

modification the value given to their unique input parameter to one or more functions or

processes connected downstream.

In the following example two sample processes receive a latitude and a longitude value. If

the two processes are not receiving their inputs from upstream elements, the

parameterization form will include four inputs, as depicted on Figure 48. If, for any reason,

the two sample processes must be applied on the same latitude value, it is neither safe nor

handy to ask the user to provide the same value twice in the form. In this case, it is preferred

to add a pass-through function (of type integer in this example) that allows giving the same

value to the two input parameters. The result, as shown on Figure 49, is a parameterization

form with only three input fields which guarantees the only latitude value will be received by

the two processes connected downstream.

Figure 48 – Workflow and parameterization form with duplicated "Latitude" fields

Figure 49 – Workflow and parameterization form with de-duplicated "Recipients" field

2.6.3.2 Value Producers (Generators)

Value producers are built-in functions that generate values that depend on the execution time

and context. For example, a generator function may be used to generate a date range that

starts at some point in the past or the future (offset) and spans a given amount of days

(duration).

D6.4 – EOPEN 2
nd

 Prototype Page 66 PART B – EOPEN Developer Guide

This is particularly helpful when the execution of a workflow is scheduled at regular interval

and at each execution a new date range must be processed.

Figure 50, below, shows an example of execution of a workflow that includes a Date Range

Producer function for generating a date range dynamically. In the example, the execution

occurs on May 11th, 2017. The generated date range covers the last 5 days (date offset = -6,

date span = 5).

Figure 50 – Example workflow execution including a Date Range Producer function

2.6.3.3 Comparators

A Comparator is a built-in workflow function that applies a comparison operator on two input
values and outputs a value that indicates whether the comparison is True or False.

The comparison operator must be chosen within a list of allowed values which depends on

the type of the inputs. Available string comparators are "equals", "startswith",

"endswith" and "matches".

The values to compare may come from an output of a process executed upstream or, if not

connected, be provided manually via the workflow parameterization form. As usual, default

values may also be provided in the workflows editor. The input values are passed through as

outputs and can thus be further connected with downstream functions and processes.

In addition to the two output values that replicate the compared values, a "result" output

indicates if the outcome of the comparison is True or False, and a “not_result” output

indicates exactly the opposite.

2.6.3.4 Conditional Branching

A workflow branch that must be executed conditionally must be connected downstream a

Conditional Start function. This function receives an "execute" parameter which, when given

the value "False" provokes the downstream functions and processes to be skipped (without

producing an error).

D6.4 – EOPEN 2
nd

 Prototype Page 67 PART B – EOPEN Developer Guide

Because the skip/no-skip decision is controlled by a "stringified" boolean value ("True" or

"False") it may be necessary to connect that input parameter to a Comparator function

upstream to implement the following scenario:

1. Use the Comparator to verify, for example, that a string matches a regular expression

and output the comparison result as a boolean value.

2. Connect a Conditional Start after the Comparator to execute the workflow branch only if

the comparison is positive.

The example workflow fragment represented in Figure 51 applies this scenario.

At execution time, the String Comparator receives the
following inputs:

 Input 1:

"S1A_IW_GRDH_1SDV_20190401T051844_

20190401T051909_026592_02FB56_1AF1"

 Comparator: "matches"

 Input 2: ".*S1.*"

Because Input 1 matches the regular expression
provided in Input 2, the function outputs the value
"True" that is communicated to the Conditional Start
function.

In this example, the Conditional Start function receives
the following inputs (all values received from the
Comparator):

 Input String:

"S1A_IW_GRDH_1SDV_20190401T051844_

20190401T051909_026592_02FB56_1AF1"

 Execute: "True"

Because the Execute parameter receives "True", the
function outputs the value of Input String and the
execution flow continues to the next process.

The Sentinel-1 waterbodies generation process
receives the scene ID as input.

Comparator and Conditional Start functions may be
included in different places in a workflow to implement
conditional branching in parallel fragments.

Functions and Processes that have been skipped
during the execution of a workflow are coloured in pink
in the Execution Report pages, as exemplified in
Figure 52, below.

Figure 51 – Example conditional
workflow fragment

D6.4 – EOPEN 2
nd

 Prototype Page 68 PART B – EOPEN Developer Guide

Figure 52 – Example skipped process in an Execution Report

In order to limit the propagation of the skipped functions and processes downstream, a

Conditional End function is also available. This is in particular useful when two or more

branches which are executed conditionally join again after the conditional fragments.

Figure 53 shows the schema of a workflow that uses Conditional Start and Conditional End

to execute workflow fragments (represented by Process B1 and Process B2) conditionally

but still pursuing the execution afterwards (Process C).

D6.4 – EOPEN 2
nd

 Prototype Page 69 PART B – EOPEN Developer Guide

Figure 53 – Workflow graph with bound conditional branches

2.6.3.5 Parallel Processing using a Dynamic List Splitter

The Dynamic List Splitter built-in function provides a means for executing a series of tasks on

every element of a list, independently and simultaneously, up to the limits of the processing

resources.

The Splitter must receive a JSON array through its only input parameter. It has a single

output which represents an entry of the array that must be connected to the workflow

fragment to be parallelised.

At the other end of the "parallelisable" workflow fragment, a Joiner function must be inserted

to act as a synchronisation point: it waits for all the workflow fragment instances to be

completed before scheduling its downstream processes.

To benefit from this feature at execution time, it is thus necessary to build the workflow

appropriately. Figure 54 represents a workflow being edited in the Workflow Editor. See

section 2.6.2 above for a general description of the Editor.

D6.4 – EOPEN 2
nd

 Prototype Page 70 PART B – EOPEN Developer Guide

Figure 54 – Workflow Editor

To create a parallelisable workflow fragment, create a workflow as represented in Figure 47:

1. Insert in the canvas the processes to be executed before the split and connect them

appropriately.

2. One of the above processes must output a list of strings. Add the Dynamic List Splitter

process in the canvas (see in the figure) and connect the process output parameter to

the splitter input parameter.

3. Insert the processes to be executed for each entry in the list and connect them

appropriately.

4. Connect the Dynamic List Splitter only output parameter to the process input parameter

that must receive the list entry to be processed.

5. Add the Joiner process (see in the figure) and connect its output of the last process to

its only input.

6. Insert the processes to be executed after the parallelized workflow fragment and connect

them appropriately. The first of these processes must be connected to the Joiner only

output parameter.

The workflow must comply with the following rules to be valid:

1. A workflow may only contain one pair of Splitter / Joiner functions.

2. No other connection than the one traversing the Splitter process are allowed between the

processes located before and after the Splitter process. The example on the left side of

Figure 55 is thus invalid and will not be executed successfully. The faulty connection is

identified with the interdiction icon.

D6.4 – EOPEN 2
nd

 Prototype Page 71 PART B – EOPEN Developer Guide

3. No other connection than the one traversing the Joiner process are allowed between the

processed located before and after the Joiner process. The example on the right side of

Figure 55 is thus invalid and will not be executed successfully. The faulty connection is

identified with the interdiction icon.

Figure 55 – Examples of Invalid Connections when using Splitter and Joiner functions

When the execution of such a workflow is complete, the Execution Report page displays

information about the multiple execution of the workflow fragment. In particular in the

"Execution Time and Status" section:

 The graphical version of the workflow represents each workflow fragment execution as a

separate process whose label is the processed item:

 Similarly, the Gantt chart lists the workflow fragment executions as processes and shows

their start and end time on the timeline.

Note: The Joiner appears to start shortly after each workflow fragment. It is actually the

case as its role is to wait for all the executions to be completed before passing the

execution flow to its downstream processes.

D6.4 – EOPEN 2
nd

 Prototype Page 72 PART B – EOPEN Developer Guide

Data files generated within the parallelized workflow fragments are available in the datastore

within folder with a "_child" suffix.

2.6.3.6 Email Notifications

The "Email Notification" built-in function allows sending emails to selected recipients at

different steps of the execution of a workflow. As the function may be connected after any

other function or process in a workflow it is mostly used to announce the completion of a

processing and if applicable the availability of new products. This is however not a limitation.

Note that the subject of the emails is customizable but not their body.

The input parameters allow specifying the list of recipients and customizing the subject of the

message:

 Any: Connect any output parameter to this input parameter allows to control at what time

in the processing chain the notification must be issued. This is usually not needed as in

general connecting to one or more of the "Input Object" parameters (see below) is

sufficient.

 Recipients: The comma or semicolon-separated list of email addresses the notification

must be sent to.

 Subject Template: A one-line string that will be used to generate the email subject. The

stringified version of one or more of the "Input Object" parameters may be included using

the <1> notation where the digit is the number of the input. Use the <input:begin:end>

notation to insert a substring of an input value (e.g. <1:17:32> inserts the substring

between position 17 and 32 from input 1).

 Input Object 1, 2 and 3: Values given to these parameters (or a substring of these) may

be included in the email subject using the template string given to the "Subject Template"

parameter. They are also inserted in full in the email body as shown in the example below.

These parameters are generally used to give information about the products that have just

be generated (name and other attributes).

The function produces the following output parameters:

 Email Subject: The email subject string as generated using the subject template and the

input object values.

 Status: The string "success". If something goes wrong in the function, the workflow fails.

Example email generated by this function:

Subject (on a single line):

[EOPEN] New Layer Published:

S1B_IW_GRDH_1SDV_20190106T052659_20190106T052724_014369_01ABD6_655A_vv_water_bodies

Message:

Notification Type: Default

Dag ID: 2019_05_08_16_03_00_973273z_publish_geotiff_example_child

Dag Run Owner: asb/admin

Execution date and time: 2019-05-08 16:05:33.168545+00:00

Start date and time: 2019-05-08 16:05:33.438319+00:00

Notification data:

 • S1B_IW_GRDH_1SDV_20190106T052659_20190106T052724_014369_01ABD6_655A_vv_water_bodies

D6.4 – EOPEN 2
nd

 Prototype Page 73 PART B – EOPEN Developer Guide

2.6.3.7 Mattermost Notifications

The Mattermost Notification built-in function allows issuing a message through a Mattermost

channel. All the users registered on that channel will instantly receive the notification. This

allows, for example, sending updates when a product has become available or alerts when

an event has been detected.

At execution time, the function issues an HTTP request to the Mattermost application. The

HTTP end-point must be configured as an Incoming WebHook. Instructions for configuring

and using Incoming WebHooks in Mattermost may be found in the following Web pages:

 https://docs.mattermost.com/developer/webhooks-incoming.html

 https://developers.mattermost.com/integrate/incoming-webhooks/

The text of the message is built using a template string similarly to the email subjects

described in the previous section.

The Mattermost Notification function takes the following input parameters:

 Any Object: Connect any output parameter to this input parameter allows to control at

what time in the processing chain the notification must be issued. This is usually not

needed as in general connecting to one or more of the "Input Object" parameters (see

below) is sufficient.

 WebHook URL: The end-point URL of the Incoming WebHook configured in Mattermost.

For example: http://<domain-or-ip>:<port>/hooks/xxxbfij1wphfdyp56stdjr52hh

 Channel: The Mattermost channel on which the message must be posted. The

following channels exist in the EOPEN Platform prototype: flood-events, snow-cover and

food-security.

 Message Template: A one-line string that will be used to generate the notification

message. The stringified version of one or more of the "Input Object" parameters may be

included using the <1> notation where the digit is the number of the input. Use the

<input:begin:end> notation to insert a substring of an input value (e.g. <1:17:32> inserts

the substring between position 17 and 32 from input 1).

 Input Object 1, 2 and 3: Values given to these parameters (or a substring of these) may

be included in the notification message using the template string given to the

"Message Template" parameter.

The function outputs the Response of the HTTP request, which should be "OK" and a
Success boolean "True" or "False".

2.6.3.8 Publish Geospatial Data in GeoServer

The Publish on GeoServer process allows publishing GeoTIFF and Shapefile products as

layers in a GeoServer instance. The process creates a new Store and a new Layer using the

geospatial data file, the name and the style given as input parameters.

The behaviour of the process can be configured using two input flags:

 Setting fail_on_geoserver_error and overwrite_if_exists inputs to True will automatically

overwrite the layer with the same name if it exists.

https://docs.mattermost.com/developer/webhooks-incoming.html
https://developers.mattermost.com/integrate/incoming-webhooks/

D6.4 – EOPEN 2
nd

 Prototype Page 74 PART B – EOPEN Developer Guide

 Setting fail_on_geoserver_error and overwrite_if_exists inputs to False will publish the

new layer only if it does not already exist. If it already exists, the new layer will not be

published and no error will be reported.

The input parameters that must be provided to the process are the following:

 GeoServer URL: Base URL of GeoServer instance.

Example: http://192.168.1.1:8080/geoserver

 GeoServer Workspace: GeoServer Workspace in which the store and layer must be

created. The workspace must already exist in GeoServer. The workspace "EOPEN"

must be used in the EOPEN platform.

 Path to data file: Filepath of the GeoTIFF or Shapefile file to publish. The file must be

accessible to GeoServer through one of the following folders: auxiliary or public.

Example:
/data/public/www/S2B_MSIL2A_20190419T101029_20190419T132322_water_bodies.tif

/data/public/www/S2B_MSIL2A_20190906T101029_N0213_R022_T32TQR_water_bodies.shp

 Tags to apply on the layer: Coma-separated list of tags / keywords to store with the

new layer. This helps filtering and searching for layers with GIS clients that support

them.

 Style: Style available in GeoServer to be applied to the new layer.

Format: "<Workspace>:<Style>". Example: EOPEN:WaterBodies

 Fail on GeoServer Error: If True, an error will be raised if GeoServer returns a status

code >= 300. Possible values are True and False.

 Overwrite If Exists: If True, the process will remove layer and store corresponding to the

name input, if they exist. Possible values are True and False.

The process outputs the following information:

 GeoServer Store: Name of the created store. This is the base name of the input file.

 GeoServer Layer: Name of the created layer. This is the base name of the input file.

2.6.3.9 Generic Template Renderer (New)

The Template Renderer function allows generating any piece of text using an input template

and the data to insert in the template. The template text must comply with the Jinja2 syntax,

see: https://palletsprojects.com/p/jinja/.

The function may be used to convert, crop, or concatenate strings, for example between

processes that do not use the same string structures.

For example:

 to append an time to an ISO data:

2019-12-24 => 2019-12-24T00:00:00

 to crop a string:

2019-12-24T12:43:23Z => 2019-12-24

http://192.168.1.1:8080/geoserver
https://palletsprojects.com/p/jinja/

D6.4 – EOPEN 2
nd

 Prototype Page 75 PART B – EOPEN Developer Guide

It may also be used to generate a text to be stored in an output file or sent through a

communication channel such as emails (see section 2.6.3.6) and Mattermost (see

section 2.6.3.7).

The following operational workflow executes the event detection in tweets data process then

generates two texts: the first one is sent by email while the second one is sent through

Mattermost.

When executed, the following data flows through the graph (note: line breaks have been

added to increase the readability):

 The output of the Event Detection process is a Python dictionary::

 {u'events': [

 {u'useCase': u'EnglishFloods', u'score': 1.56,

 u'epoch_timestamp': 1578133493565, u'change': u'91%'},

 {u'useCase': u'EnglishFood', u'score': 0.32,

 u'epoch_timestamp': 1578133497885, u'change': u'-19%'},

 {u'useCase': u'EnglishSnow', u'score': 0.58,

 u'epoch_timestamp': 1578133501892, u'change': u'-34%'},

 {u'useCase': u'FinnishSnow', u'score': 0.43,

 u'epoch_timestamp': 1578133505873, u'change': u'26%'},

 {u'useCase': u'GreekFloods', u'score': 0.94,

 u'epoch_timestamp': 1578133509851, u'change': u'112%'},

 {u'useCase': u'GreekSnow', u'score': 0.23,

 u'epoch_timestamp': 1578133513829, u'change': u'-48%'},

 {u'useCase': u'ItalianFloods', u'score': 0.2,

 u'epoch_timestamp': 1578133517814, u'change': u'-43%'},

 {u'useCase': u'KoreanFood', u'score': 0.26,

 u'epoch_timestamp': 1578133521795, u'change': u'-100%'}

]

}

 The Template Renderer function on the left receives the Python dictionary and a Jinja2

template for rendering the data into a fragment of HTML document. This document will

then be sent by email to selected recipients.

 Jinja2 template:

 Detected events
{% for event in input1.events %}

{{event.useCase}}: score={{event.score}},

time={{datetime.fromtimestamp(event.epoch_timestamp/1000.0).strftime('%Y-%m-%d

%H:%M:%S')}}, change={{event.change}}

{% endfor %}

 Generated HTML document fragment:

 Detected events

EnglishFloods: score=1.56, time=2020-01-04 11:24:53, change=91%

EnglishFood: score=0.32, time=2020-01-04 11:24:57, change=-19%

EnglishSnow: score=0.58, time=2020-01-04 11:25:01, change=-34%

FinnishSnow: score=0.43, time=2020-01-04 11:25:05, change=26%

GreekFloods: score=0.94, time=2020-01-04 11:25:09, change=112%

GreekSnow: score=0.23, time=2020-01-04 11:25:13, change=-48%

ItalianFloods: score=0.2, time=2020-01-04 11:25:17, change=-43%

KoreanFood: score=0.26, time=2020-01-04 11:25:21, change=-100%

D6.4 – EOPEN 2
nd

 Prototype Page 76 PART B – EOPEN Developer Guide

 The second Template Renderer function receives with the same Python dictionary a

Jinja2 template for rendering the data into a Markdown text. This document will then be

sent through Mattermost.

 Jinja2 template:

 Events detected in tweets:{% for event in input1.events %}

* **{{event.useCase}}**: score={{event.score}},

time={{datetime.fromtimestamp(event.epoch_timestamp/1000.0).strftime('%Y-%m-%d

%H:%M:%S.%f')}}, change={{event.change}}{% endfor %}

 Generated Markdown text:

 Events detected in tweets:

* **EnglishFloods**: score=1.56, time=2020-01-04 11:24:53.565000, change=91%

* **EnglishFood**: score=0.32, time=2020-01-04 11:24:57.885000, change=-19

* **EnglishSnow**: score=0.58, time=2020-01-04 11:25:01.892000, change=-34%

* **FinnishSnow**: score=0.43, time=2020-01-04 11:25:05.873000, change=26%

* **GreekFloods**: score=0.94, time=2020-01-04 11:25:09.851000, change=112%

* **GreekSnow**: score=0.23, time=2020-01-04 11:25:13.829000, change=-48%

* **ItalianFloods**: score=0.2, time=2020-01-04 11:25:17.814000, change=-43%

* **KoreanFood**: score=0.26, time=2020-01-04 11:25:21.795000, change=-100%

Figure 56 – Event Detection Workflow using the Template Renderer

2.6.3.10 Generic Harvester

The generic Harvest process allows downloading files from a remote location to a local

folder. The harvester supports the FTP and HTTP protocols. Files may be downloaded

recursively and credentials may be provided to authenticate to remote FTP servers should it

be necessary.

D6.4 – EOPEN 2
nd

 Prototype Page 77 PART B – EOPEN Developer Guide

The input parameters that must be provided to the process are the following:

 Source URL: FTP or HTTP URL where the data will be found.

 Encrypted Credentials File: Should the FTP server require authentication to give access

to the files, the FTP user credentials must be provided in an encrypted form to the

process. This parameter receives the path to the file that contains the encrypted FTP user

and password.

 Local Path: The path to the folder where the downloaded files must be stored.

 Glob Filter: Use this parameter to indicate which files must be downloaded by means of a

glob string. If all the files must be downloaded, use the asterisk character "*".

 Recurse: Set to “True” if the files must be downloaded recursively.

The process outputs the following information:

 New Files: JSON array containing the full list of downloaded files (with their path).

 New Files Count: The amount of downloaded files (must match the size of the JSON

array).

 Status: “success”.

2.6.4 Workflow On-Demand Execution

An immediate on-demand Workflow execution may be requested from both the Workflows

Management page (Figure 44) and in a specific Workflow Management page (Figure 46).

Both pages include a Configure Execution button. Clicking on it leads to the Workflow

Parameterization page (Figure 57). This shows a form that allows entering or selecting the

values to be provided to the workflow. The form content depends on the workflow definition

and in particular the processes it includes and their unconnected input parameters.

Click on the Execute button located below the form to submit the order and initiate the

execution of the workflow. The Executions page (see section 2.6.6) is then automatically

displayed. That page is also reachable using the Executions tab located in the header panel.

D6.4 – EOPEN 2
nd

 Prototype Page 78 PART B – EOPEN Developer Guide

Figure 57 – Workflow Parameterisation Page

Note: As can be seen on the figure above, a Schedule switch is provided above the

parameterisation form. This allows revealing or hiding a second form for scheduling

unattended executions (described in the next section). The same page thus allows initiating

instant executions and configuring scheduled execution(s).

2.6.5 Workflow Executions Scheduling

The Workflow Execution Scheduling page is accessed either by clicking on

a Schedule Executions button located on the Workflows Management page (see Figure 44)

or in a specific Workflow Management page (Figure 46).

Scheduled execution allows to configure the date(s) and time(s) at which a given workflow

must be executed. This allows, for example, executing a workflow a few hours after a given

product is expected to become available, or each time the content of a database must be

updated.

The available options are similar to what "cron" jobs allow in Linux/Unix systems:

 Single execution at a given future date and time.

 Repeated executions at a given time and interval (expressed in days), within a date range.

 Repeated executions at a given time on specific month days. This allows, for example,

executing a workflow at 1:00 AM every 1st, 11th and 21st day of each month.

In addition to the configuration of the scheduler itself, the Workflow Execution Scheduling

page (as depicted on Figure 58) asks for the values to be given to the input parameters at

each workflow execution.

D6.4 – EOPEN 2
nd

 Prototype Page 79 PART B – EOPEN Developer Guide

Figure 58 – Workflow Execution Scheduling Page

As for on-demand immediate executions, input parameters of the scheduled workflows must

be given static values. Variability is supported by including in the workflow definition tasks

that use static inputs to produce context-specific values at run time. This makes it possible,

for example, to output a date range that covers the 5 days that precede each execution time.

Read more about the Value Producers (Generators) in section 2.6.3.2.

After initial configuration, the schedules are listed in the Schedules page (Figure 59),

accessible using the Schedules tab located in the header panel. This page gives an overview

of the existing schedules, being enabled or not. The table provides the following information:

 a generated unique identifier,

 the name given to the schedule entry (free text),

 the workflow name and version,

 the date and time the schedule entry has been created,

 a verbalized version of the schedule configuration (schedule description),

 a status flag (Enabled/Disabled)

Click on the schedule identifier to access to its Workflow Execution Scheduling page

(Figure 58). This allows enabling/disabling and re-configuring schedules individually.

D6.4 – EOPEN 2
nd

 Prototype Page 80 PART B – EOPEN Developer Guide

Figure 59 – Workflow Execution Schedules Page

2.6.6 Workflow Execution Monitoring

Workflow executions may be monitored and inspected in the Workflow Executions page,

accessible using the Executions tab located in the header panel.

The page displays all the workflow executions ever started in a workspace accessible by the

current user (Figure 60). The executions table is paginated and shows by default the most

recent and the on-going executions. Above the table an input field allows filtering the table

entries using a string fragment.

Figure 60 – Workflow Executions Page

D6.4 – EOPEN 2
nd

 Prototype Page 81 PART B – EOPEN Developer Guide

Each table row includes the following elements:

 the identification of the executed (or being executed) workflow,

 the user who initiated the (possibly scheduled) execution,

 the date and time the particular execution has started,

 the status of the workflow execution using a colour code: Pending (grey), Running (blue),

Success (green), Failed (red). A percentage of completion is shown for on-going

executions.

 an Execution Report button that leads to the Workflow Execution Report page (see

section 2.6.7),

 a caret < that allows revealing and hiding the workflow execution parameters right within

the table (see Figure Figure 61)

Figure 61 – Workflow Execution Parameters

2.6.7 Workflow Execution Report

Access to the Workflow Execution Report pages is only available via the Workflow

Executions page.

A Workflow Execution Report allows to inspect the execution metadata, the user-specified

input parameters (bounding box, time range, scene identifiers, and other specific input

values), the list of outputs and generated product files, and if available quicklooks of the

output products. Figure 62 shows an example Workflow Execution Report.

At the top, the workflow execution metadata contain an EOPEN Datastore link (see the red

box on the Figure) that points to the location where the files generated by the workflow have

been collected. Clicking on that link opens the location in a new page (or tab depending on

the browser configuration), as represented in Figure 63, below.

D6.4 – EOPEN 2
nd

 Prototype Page 82 PART B – EOPEN Developer Guide

Figure 62 – Workflow Execution Report

Figure 63 – Workflow Run Output Folder in the Datastore

2.6.8 Workflow Sharing

By default, a Workflow is only visible and usable by its owner, that is, the user who created it.

In order to share a Workflow with other platform users, this must be added in a workspace

accessible by these users (that is, a workspace in which they have a role).

In the following example, user “eopen” wants to share his Workflow “Example EOPEN

Workflow” with the users who are given access to workspace “EOPEN”.

D6.4 – EOPEN 2
nd

 Prototype Page 83 PART B – EOPEN Developer Guide

As can be seen on Figure 64, the process is not yet assigned to any workspace. To do this,

click on the Share this workflow button. A popup dialog box appears. This allows selecting

the workspace(s) the workflow must be assigned to. Workspaces must be selected in a

drop-down list. Once selected, a workspace may be removed by clicking on its “X” icon. The

sequence of operations is depicted in Figure 65.

Figure 64 – Workflow Management Page

Figure 65 – Workflow Sharing Operations

To cancel the changes, click on the “X” icon in the top-right corner or simply click outside the

dialog box. Click on the Share workflow button to apply the changes and close the box.

D6.4 – EOPEN 2
nd

 Prototype Page 84 PART B – EOPEN Developer Guide

Appendix A Glossary

In this section you will find the definition of the main concepts and technologies used in the
EOPEN Platform.

Algorithm The code written by the developers and used to process data.

In the EOPEN Platform, files implementing the algorithms must be imported as

processes as explained in section 2.5.7.

Auxiliary Folder The Auxiliary folder (which may contain sub-folders to organize the files) is

meant to contain files consumed by the processes at execution time. The

auxiliary folder is mounted in read-only in the execution environment of each

process instance to guarantee its immutability.

Currently, the users may not populate the auxiliary folder themselves.

Please contact the platform administrators (Space Applications Services) when

files must be added or removed from the auxiliary folder.

Controller Node The system that hosts the core components of the platform. For example, core

components provide the following services:

 Web-based user interface

 Persistence of the configuration

 Workflow processes orchestration

 Cloud resources management

 User management

In the context of the First EOPEN Prototype, the Controller Node is hosted at

Space Applications Services.

Datastore This is the storage volume where all the output files generated by the

processes are persisted. Each Workflow Execution Report provides a link to

the folder in the Datastore that contains the outputs of the executed processes.

See section 2.6.7.

Docker/Dockerfile Docker is the technology used to build the execution environment (Docker

image) of each individual process. In this environment, the tools and libraries

necessary for running the process are pre-installed. The software

dependencies must be specified at import time (see section 2.5.7).

At execution time, an instance of the Docker image is created and started as a

Docker container. Within the container, the process runs in a sandboxed

manner.

A Dockerfile contains the instructions for building a particular Docker image.

Owner

(Process and

Workflow)

Each Process and Workflow existing in the platform is associated to one and

only one Owner. By default, the owner is the user who has created a resource.

Note: Changing an ownership cannot be done by the developers. It is under

the responsibility of the platform administrators.

D6.4 – EOPEN 2
nd

 Prototype Page 85 PART B – EOPEN Developer Guide

Process A Process is a containerized algorithm. A Process definition includes a name,

description, and version, as well as (typed) input and output parameters, and

software and hardware dependencies. The typed inputs and outputs allow

ensuring the compatibility of the parameters inter-connected in the workflow

graphs. The EOPEN Developer Portal allows creating and configuring

processes, uploading process (version) implementation files, and building and

registering new process versions.

In the EOPEN Platform, executing a process (as part of a Workflow) is a

one-shot operation. It is deployed, executed once, and then it is un-deployed.

Process Version A Process Version is a variant of a process that is implemented by a specific

set of files. Multiple versions may be created for the same process for example

to provide slightly different implementations, or to enhance the quality or the

capabilities of the process implementation.

Once it is released, a Process Version may be selected and integrated in

Workflows.

More about the Process and Process Version development lifecycle may be

found in section 2.5.1.

Process Wrapper In the EOPEN Platform context, a Process Wrapper is a script written in the

Python language that acts as adapter for the imported algorithms. Algorithms

require different sets of parameters and may potentially be implemented in

various languages, compiled or not (e.g. Python, Java, R, C/C++). This has an

impact on the manner an algorithm must be executed.

Concretely an "execute(…)" function must be implemented in each process

wrapper to pass the input parameters to the algorithm and return back the

results. The Process Import Tool must be used to generate process wrapper

templates (see section 2.5.5).

Public Folder

Public Volume

The Public Folder (or Volume) is meant to receive the files generated by the

workflows and which must be available as input for other workflows (see

section 2.5.10.8)

Role A Role is a permission level that may be given to a platform User in a particular

Workspace. A User may play several Roles in the same Workspace and may

play different Roles in different Workspaces.

Workspace and Roles determine the resources (Process, Workflow, Schedule,

Report) a User may access and the actions he may execute on them.

Service In the EOPEN Platform, a service may be seen as a persistent process. A

service is deployed and started once. After that it remains active and is invoked

by client processes.

Example services are database engines (PostgreSQL/PostGIS, MongoDB),

OGC web services (GeoServer) and Product Catalogues. They must be always

available for use by client processes (orchestrated in workflows).

The EOPEN Platform does not provide a user interface for importing, deploying

and managing the orchestration (status, start, restart, stop) the services. These

operations are performed manually by the platform administrators. Please

contact them if necessary.

D6.4 – EOPEN 2
nd

 Prototype Page 86 PART B – EOPEN Developer Guide

WebHook A WebHook is a configurable HTTP end-point in a running service.

In the EOPEN Platform, Mattermost Incoming WebHooks are used to post

instant messages. This feature is described in section 2.6.3.7.

Supporting WebHooks in other software products is possible by implementing

the appropriate client process.

Worker Node A system that has been prepared for accepting process deployment and

execution requests. Multiple processes may be run in parallel in a single

worker node but running a variable amount of worker node provides better

scalability.

Worker nodes are typically created in cloud environments as they allow

dynamically starting and stopping them depending on the demand.

Workflow A Workflow is an Application defined by a graph of inter-connected Processes.

The EOPEN Developer Portal includes a graphical Workflow Editor (see

section 2.6.2) for creating workflows interactively, e.g. selecting the appropriate

processes and connecting parameters with drag-&-drop. Workflows can be

executed on-demand, scheduled or externally triggered. The platform

automatically generates the parameterisation forms that allow giving values to

unconnected input parameters. EOPEN includes interfaces for monitoring and

control, reporting and data access.

All the Workflows related features are described in section 2.6.

Workspace A Workspace is a virtual environment which allows sharing resources,

including Processes and Workflows, with other users.

On one hand individual Users may be given one or more Roles in certain

Workspaces. On the other hand, each resource may below to selected

Workspaces. The main rule is that a resource is accessible to a user only if he

has a role in one of the resource workspaces. The role then determines what

the user can do with the resource: View, Edit, Delete, etc.

Process and Workflow sharing is described in sections 2.5.9 and 2.6.8,

respectively.

D6.4 – EOPEN 2
nd

 Prototype Page 87 PART B – EOPEN Developer Guide

Appendix B Inventory of the Integrated EOPEN Modules

This appendix provides an overview of the modules that have been integrated in the First
EOPEN Prototype, either as processes or as services.

B.1 Integrated Processes

Process Search Hubs 2

Description Search Sentinel data hubs for S1, S2 and S3 metadata.

Store the metadata in the Sentinel Product Catalogue.

Provider NOA

Reference Umbrella Application of Sentinel Hubs, KR10 (NOA, Task 3.1, M1-M32, D3.1)

Process Scoring Hubs v1

Description Measure Download Speed of Hubs and update the Product Catalogue.

Provider NOA

Reference Umbrella Application of Sentinel Hubs, KR10 (NOA, Task 3.1, M1-M32, D3.1)

Process Delete Metadata v1

Description Delete from the Product Catalogue the products that no longer exist in the Sentinel

hubs

Provider NOA

Reference Umbrella Application of Sentinel Hubs, KR10 (NOA, Task 3.1, M1-M32, D3.1)

Process Discovery Process v1

Description Discover Sentinel-1 and Sentinel-2 products using the NOA umbrella API.

Provider CERTH

Reference Change Detection in EO Data, KR01 (CERTH, Task 4.1, M1-M33, D4.4)

Process Download Product v1

Description Download a list of Sentinel-1 and Sentinel-2 products.

Provider CERTH

Reference Change Detection in EO Data, KR01 (CERTH, Task 4.1, M1-M33, D4.4)

D6.4 – EOPEN 2
nd

 Prototype Page 88 PART B – EOPEN Developer Guide

Process Sentinel-1 Waterbodies Generation v5

Description Create water bodies and processed images based on selected VV or VH band.

Receive as inputs a list with multiple product filenames, an AOI polygon and

optionally the desired bands to process (VV is default).

Store information about the processed products in MongoDB.

Provider CERTH

Reference Change Detection in EO Data, KR01 (CERTH, Task 4.1, M1-M33, D4.1)

Process Sentinel-2 Watermask Generation v2

Description Receive a list of Sentinel-2 products as input, generate a water mask for each

scene, and store the results in MongoDB.

Provider CERTH

Reference Change Detection in EO Data, KR01 (CERTH, Task 4.1, M1-M33, D4.1)

Process Event Detection v1

Description Detect peaks in the daily number of tweets over a month.

Provider CERTH

Reference Event Detection Module, KR02 (CERTH, Task 4.2, M3-M32, D4.4)

Process GeoTriples Any to RDF Converter v1

Description Use GeoTriples to convert structured data into RDF.

Provider SpaceApps

Reference Linked open EO data, KR09 (SpaceApps, Task 5.2, M7-M33, D5.3)

Process Publish on GeoServer

Description Publish a GeoTIFF or a Shapefile product as a GIS layer in GeoServer.

Provider SpaceApps

Reference EOPEN System Integration (SpaceApps, Task 6.2, M5-M33, D6.3)

Process Mattermost Notification

Description Send a notification to a Mattermost channel. See section 2.6.3.7.

Provider SpaceApps

Reference EOPEN System Integration (SpaceApps, Task 6.2, M5-M33, D6.3)

D6.4 – EOPEN 2
nd

 Prototype Page 89 PART B – EOPEN Developer Guide

Process Harvester v2

Description Copy files from a (possibly remote) location to a local folder. See section 2.6.3.10.

Provider SpaceApps

Reference EOPEN System Integration (SpaceApps, Task 6.2, M5-M33, D6.3)

B.2 Integrated Services

The services listed here are used by the processes introduced above when they are
executed within workflows.

Service Mattermost

Description Mattermost, the messaging and notification service.

Provider SpaceApps

Reference EOPEN System Integration (SpaceApps, Task 6.2, M5-M33, D6.3)

Service eopen-communities

Description Detect communities in Twitter records and return the results in JSON format.

Provider CERTH

Reference Community Detection Module, KR07 (CERTH, Task 4.5, M5-M33, D4.4)

Service eopen-clustering

Description Apply a clustering mechanism to perform topic detection in Twitter records and

return the results in JSON format.

Provider CERTH

Reference Data Clustering Module, KR05 (CERTH, Task 4.4, M1-M36, D4.2)

Service twitter-web

Description Convert analysis results formatted in JSON into RDF formatted in Turtle (TTL) and

use the GraphDB service to store the result.

Provider CERTH

Reference Reasoning for Decision Support, KR08 (CERTH, Task 5.3, M6-M32, D5.1)

D6.4 – EOPEN 2
nd

 Prototype Page 90 PART B – EOPEN Developer Guide

Service Umbrella Application of Sentinel Hubs

Description Implement a Product Catalogue that contains the metadata of the Sentinel

missions. The data is stored in PostgreSQL/PostGIS.

Provider NOA

Reference Umbrella Application of Sentinel Hubs, KR10 (NOA, Task 3.1, M1-M32, D3.1)

Service GraphDB

Description Store the Linked Data generated by CERTH's JSON to RDF converter

Provider CERTH

Reference Knowledge Management, KR08 (CERTH, Task 5.3, M6-M32, D5.1)

Service MongoDB

Description Store data about the collected tweets and the analysed EO products

Provider CERTH

Reference Social Media Crawlers, KR12 (CERTH, Task 3.2, M1-31, D3.3)

Service PostgreSQL / PostGIS

Description Stores the Product Catalogue (Umbrella Application of Sentinel Hubs) data.

Provider SpaceApps

Reference n/a

Service GeoServer

Description Organize and serve the geo-temporal data stored or generated by EOPEN using

OGC standards (incl. WMS, WFS).

Provider SpaceApps

Reference Interactive real-time visualisations (SpaceApps, Task 6.4, M7-M33, D6.5)

D6.4 – EOPEN 2
nd

 Prototype Page 91 PART B – EOPEN Developer Guide

Appendix C SNAP Graph Parameterisation

SNAP graphs edited and exported using the SNAP Graph Builder, built in the SNAP Desktop

application only contain hard-coded parameters. In order to execute such a graph using

SNAP Graph Processing Tool (GPT) and giving the possibility to specify parameter values at

execution time, it is necessary to adapt the graph by replacing hard-coded values with

named placeholders.

Some SNAP operators also omit to specify input parameters because they are expected to

be provided by the user when the graph is executed using the SNAP Desktop application. In

such a case, the missing parameters must be added with named placeholders.

The graph fragment shown in Figure 66 includes example operators with omitted (in the

"Read" operator) and hard-coded parameters (in the "Write" operator).

<graph id="Graph">

 <version>1.0</version>

 <node id="Read">

 <operator>Read</operator>

 <sources/>

 <parameters class="com.bc.ceres.binding.dom.XppDomElement"/>

 </node>

 <!-- elements removed here -->

 <node id="Write">

 <operator>Write</operator>

 <sources>

 <sourceProduct refid="Convert-Datatype"/>

 </sources>

 <parameters class="com.bc.ceres.binding.dom.XppDomElement">

 <file>L:\S1_SMCampaign\Output\target.tif</file>

 <formatName>GeoTIFF-BigTIFF</formatName>

 </parameters>

 </node>

 <applicationData id="Presentation">

 </applicationData>

</graph>

Missing "file"
parameter

Hard-coded file name

Figure 66 – SNAP Graph (Fragment) Exported by the Graph Builder

The next figure shows the same SNAP graph fragment in which the omitted and the

hard-coded parameters have been replaced with named placeholders:

<graph id="Graph">

 <version>1.0</version>

 <node id="Read">

 <operator>Read</operator>

 <sources/>

 <parameters class="com.bc.ceres.binding.dom.XppDomElement">

 <file>${scene1}</file>

 </parameters>

 </node>

 <!-- elements removed here -->

 <node id="Write">

 <operator>Write</operator>

 <sources>

 <sourceProduct refid="Convert-Datatype"/>

 </sources>

 <parameters class="com.bc.ceres.binding.dom.XppDomElement">

 <file>${outputTiff}</file>

 <formatName>GeoTIFF-BigTIFF</formatName>

 </parameters>

 </node>

 <applicationData id="Presentation">

 </applicationData>

</graph>

${scene1}

${outputTiff}

Figure 67 – SNAP Graph (Fragment) Edited With Placeholders

D6.4 – EOPEN 2
nd

 Prototype Page 92 PART B – EOPEN Developer Guide

To execute the parameterized SNAP graph using GPT, a value must be provided to fill-in

each placeholder using the syntax "-P{name}={value}". To be on the safe side, it is

advised to enclose the value within double quotes.

Example GPT call:

/snap/bin/gpt "snap_gaph.xml" \

 -PoutputTiff="target.tif" \

 -Pscene1="S1B_S3_SLC__1SDV_20180201T173939_20180201T174013_009433_010F43_29FE.zip"

D6.4 – EOPEN 2
nd

 Prototype Page 93 PART B – EOPEN Developer Guide

Appendix D Example process_wrapper.py Scripts

D.1 Execution of a SNAP Graph using GPT

The following code gives an example of process wrapper function that executes the

command-line SNAP GPT (Graph Processing Tool) on a parameterized SNAP Graph whose

name is provided in parameter.

The code on white background is automatically produced by the Process Wrapper Template

Generator (see section 2.5.5 on page 46). The custom instructions added into the template

are highlighted in the pink areas. The execute function generates the "gpt" execution string

using the values received in the input parameters then executes it in a sub-process using the

Python subprocess library. The function returns the path to the output file.

import datetime, os, subprocess

--

Save this code in file "process_wrapper.py" and adapt as indicated in inline comments.

Notes:

- This is a Python 2 script. It is incompatible with Python 3.

- The inputs will be given values by name, thus their order has no importance ...

- ... except that the inputs with a default value must be listed last.

- Parameter names are automatically converted into valid Python variable names.

- Any empty line or line starting with a '#' character will be ignored.

--

SNAP_HOME='/home/worker/snap/'

JAVA_HOME='/usr/local/jre'

JRE_HOME='/usr/local/jre'

def log_info(out_dir, message):

 with open(os.path.join(out_dir, 'stdout.txt'), 'a') as out_file:

 out_file.write('[%s]\n%s\n' % (datetime.datetime.today(), message))

def log_error(out_dir, message):

 with open(os.path.join(out_dir, 'stderr.txt'), 'a') as out_file:

 out_file.write('[%s]\n%s\n' % (datetime.datetime.today(), message))

def execute(out_dir, snap_graph_file, input_file, resolution, band_maths_expression, \

 output_file, output_format):

 """

 Identification:

 Name -- ASB Demo Sentinel-2 Band Maths

 Description --

 Version -- 1

 Author --

 Mission -- sentinel_2

 Inputs:

 snap_graph_file -- SNAP Graph File (with path) -- 45/User String

 input_file -- Input File (with path) -- 45/User String

 resolution -- Resolution (10, 20, 60) -- 45/User String

 band_maths_expression -- Band Maths Expression -- 45/User String

 output_file -- Output File -- 45/User String

 output_format -- Output Format -- 45/User String

 Outputs:

 output_path -- Output Path -- 45/User String

 Main Dependency:

 snap_sen_tbx-7.0

D6.4 – EOPEN 2
nd

 Prototype Page 94 PART B – EOPEN Developer Guide

 Software Dependencies:

 python-2

 Processing Resources:

 ram -- 8

 disk -- 100

 cpu -- 4

 """

 output_path = None

 # --

 # Insert your own code below.

 # Store the generated files in the "out_dir" folder. Anything else is dropped after

 # each process execution.

 # Give appropriate values to the ouput parameters. These will be passed to the next

 # process(es) following the worklow connections.

 # --

 proc = None

 output_file = os.path.join(out_dir, os.path.split(output_file_name)[1])

 # Add '-e' parameter to get more stack traces in case of error

 cmd = ('gpt "%s" -c 16G -q 8 -e -Pinput_file="%s" -Pband_maths_expression="%s" ' \

 '-Pname="%s" -Ptype="%s" -Poutput_file="%s" -Poutput_format="%s"') % \

 (snap_graph_file, input_file, band_maths_expression, name, type, \

 output_file_name, output_format)

 log_info(out_dir, 'Command: \n%s\n' % cmd)

 try:

 proc = subprocess.Popen([cmd], stderr=subprocess.PIPE, shell=True)

 (out, err) = proc.communicate()

 log_info(out_dir, out)

 log_error(out_dir, err)

 except Exception as e:

 if not proc:

 raise Exception('Exception while preparing gpt execution: %s' % e)

 log_info(out_dir, 'Process return code: %s' % proc.returncode)

 raise Exception('Exception during gpt execution: %s' % e)

 # --

 # The wrapper must return a dictionary that contains the output parameter values.

 # --

 return {

 'output_path': output_file

 }

Figure 68 – Example process_wrapper.py executing a SNAP graph

D6.4 – EOPEN 2
nd

 Prototype Page 95 PART B – EOPEN Developer Guide

D.2 Execution of GeoTriples using JRE

The following code gives an example of process wrapper function that executes the

GeoTriples application in headless mode. GeoTriples is used to convert structured data

(including JSON, XML, and Shapefile) into RDF. It receives as inputs the name of the input

and output files, as well as the name of the files that contain the mapping rules and the

applicable RDF namespaces.

import datetime, os, subprocess

--

Save this code in file "process_wrapper.py" and adapt as indicated in inline comments.

Notes:

- This is a Python 2 script. It is incompatible with Python 3.

- The inputs will be given values by name, thus their order has no importance ...

- ... except that the inputs with a default value must be listed last.

- Parameter names are automatically converted into valid Python variable names.

- Any empty line or line starting with a '#' character will be ignored.

--

JRE_BIN='/usr/local/jre/bin/java'

JAVA_HOME='/usr/local/jre'

JRE_HOME='/usr/local/jre'

JRE_BIN='/usr/local/jre/bin/java'

GEOTRIPLES_HOME='/usr/local/geotriples'

def execute(out_dir, input_file='', rml_template_file='mapping.rml.ttl.tmpl', \

 output_rdf_file='output.rdf', namespaces_file='namespaces.ns'):

 """

 Identification:

 Name -- GeoTriples Any to RDF Converter

 Description -- Use GeoTriples to convert structured data into RDF

 Version -- 1

 Author --

 Mission -- eopen

 Inputs:

 input_file -- Input file -- 45/User String

 rml_template_file -- RML template file -- 45/User String -- mapping.rml.ttl.tmpl

 namespaces_file -- Namespaces definition file -- 45/User String -- namespaces.ns

 output_rdf_file -- Output RDF file -- 45/User String -- output.rdf

 Outputs:

 status -- Status -- 45/User String

 output_file -- Output file -- 45/User String

 Main Dependency:

 python-2

 Software Dependencies:

 python-2

 oracle_jre-8u171

 geotriples-1.1.6

D6.4 – EOPEN 2
nd

 Prototype Page 96 PART B – EOPEN Developer Guide

 Processing Resources:

 ram -- 2

 disk -- 10

 cpu -- 1

 """

 output_path = None

 # --

 # Insert your own code below.

 # Store the generated files in the "out_dir" folder. Anything else is dropped after

 # each process execution.

 # Give appropriate values to the ouput parameters. These will be passed to the next

 # process(es) following the worklow connections.

 # --

 jre = JRE_BIN

 jar = os.path.join(GEOTRIPLES_HOME, 'geotriples-1.1.6-SNAPSHOT-cmd.jar')

 cmd = 'dump_rdf'

 output_file = os.path.join(out_dir, output_rdf_file)

 # Render the RML template file into an RML mapping file

 # That is, replace the placeholders ${input_file} with the value of intput_file

 rml_mapping_file = '/tmp/mapping.rml.ttl'

 rml_template_file_in = open(rml_template_file, 'r')

 rml_mapping_file_out = open(rml_mapping_file, 'w')

 for line in rml_template_file_in:

 rml_mapping_file_out.write(line.replace('${input_file}', input_file))

 rml_template_file_in.close()

 rml_mapping_file_out.close()

 log4j = '-Dlog4j.configuration=file://'+GEOTRIPLES_HOME+'/log4j.properties'

 try:

 # java -jar ../../target/geotriples-1.0.5-SNAPSHOT-cmd.jar dump_rdf

 # -ns namespaces.ns -s 31370 -rml -o output.rdf mapping.rml.ttl

 cmd_str = "%s %s -jar '%s' %s -ns '%s' -s 31370 -rml -o '%s' '%s'" % \

 (jre, log4j, jar, cmd, namespaces_file, output_file, rml_mapping_file)

 print(cmd_str)

 status = subprocess.Popen(cmd_str, shell=True, \

 stdout=subprocess.PIPE).stdout.read()

 except Exception as e:

 status = 'Failed with exception: %s' % str(e)

 # --

 # The wrapper must return a dictionary that contains the output parameter values.

 # --

 return {

 'status': status,

 'output_file': output_file

 }

Figure 69 – Example process_wrapper.py executing a SNAP graph

D6.4 – EOPEN 2
nd

 Prototype Page 97 PART B – EOPEN Developer Guide

D.3 Execution of local shell scripts

The following code gives an example of process wrapper function that executes a local shell

script whose name is provided in the "script" input parameter. Other input values are

passed to the Bash script as well.

This particular example is used to execute a process pre-deployed at HLRS, get back the

output of the process (showresult), as well as retrieve the input text (showinput). This

last step is included for testing purpose.

--

Save this code in file "process_wrapper.py" and adapt as indicated in inline comments.

Notes:

- This is a Python 2 script. It is incompatible with Python 3.

- The inputs will be given values by name, thus their order has no importance ...

- ... except that the inputs with a default value must be listed last.

- Parameter names are automatically converted into valid Python variable names.

- Any empty line or line starting with a '#' character will be ignored.

--

def execute(out_dir, script, username, key, input_file, output_file):

 """

 Identification:

 Name -- EOPEN HLRS SSH Integration

 Description -- Proof-of-concept for EOPEN HLRS Integration. Running a SPARK example

through ssh. Implemented for 16/11/2018 review.

 Version -- 1

 Author -- Space Applications Services

 Mission -- eopen

 Inputs:

 script -- Script -- 45/User String

 username -- Username -- 45/User String

 key -- Key -- 45/User String

 input_file -- Input File -- 45/User String

 output_file -- Output File -- 45/User String

 Outputs:

 input_content -- Input content -- 45/User String

 result -- Result -- 45/User String

 logs -- Logs -- 45/User String

 Main Dependency:

 python-2

 Processing Resources:

 ram -- 1

 disk -- 1

 cpu -- 1

 """

 input_content = None

 result = None

 logs = None

 # --

 # Insert your own code below.

 # Store the generated files in the "out_dir" folder. Anything else is dropped after

 # each process execution.

 # Give appropriate values to the ouput parameters. These will be passed to the next

 # process(es) following the worklow connections.

 # --

D6.4 – EOPEN 2
nd

 Prototype Page 98 PART B – EOPEN Developer Guide

 import subprocess

 proc = subprocess.Popen(

 ['bash', script, 'execute', username, key, input_file, output_file],

 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 logs = proc.stdout.read()

 proc = subprocess.Popen(

 ['bash', script, 'showresult', username, key, input_file, output_file],

 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 result = proc.stdout.read()

 proc = subprocess.Popen(

 ['bash', script, 'showinput', username, key, input_file, output_file],

 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 input_content = proc.stdout.read()

 # --

 # The wrapper must return a dictionary that contains the output parameter values.

 # --

 return {

 'input_content': input_content,

 'result': result,

 'logs': '<![CDATA[' + logs + ']]>',

 }

Figure 70 – Example process_wrapper.py executing Bash scripts

