

40th Asian Conference on Remote Sensing, Daejeon, Korea, 2019

Semantic Fusion of Heterogeneous Data Sources for Decision Making and Decision-Support Systems

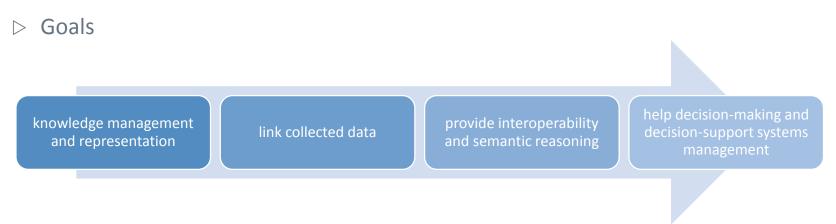
Presenter: Stefanos Vrochidis CERTH

Overview

- \triangleright Introduction
- ▷ Mapping mechanism
- ▷ Reasoning framework
- > Localisation module
- \triangleright Results

2

ACRS2019, Daejeon, Korea



ACRS2019, Daejeon, Korea

Introduction

▷ Problem

Connection among heterogeneous data from several sources (e.g. social media, sources that contain meteorological or climate information)

\triangleright Solution

3

Metadata representation using existing ontologies and vocabularies, interlinking and analysis using reasoning mechanisms

Mapping mechanism: non-geospatial data

▷ The procedure that we followed for mapping non-geospatial data consists of:

Usage of existing standards, vocabularies, ontologies and methodologies

•e.g. the W3C standard, Web ontology language, Web Annotation Data Model, "Ontology development 101" methodology

Formulation of EOPEN ontology

•Reusing and extending the above mentioned structures

Development of mapping mechanism

•Implementing mapping algorithms and interfaces

Saving in Knowledge Base (KB)

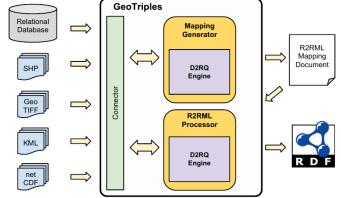
•Results saving in RDF format

ACRS2019, Daejeon, Korea

Mapping mechanism: geospatial data

Usage of GeoTriples tool to convert geospatial structured data from various formats into Linked Data.

⊳ Input


ESRI Shapefiles, XML, GML, KML, JSON, GeoJSON and CSV documents or spatially-enabled relational databases (e.g. PostGIS and MonetDB).

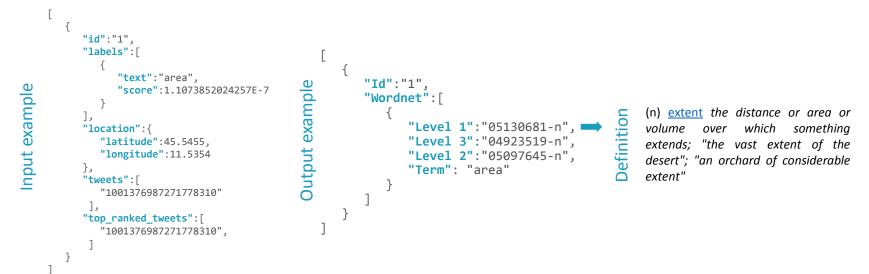
▷ Procedure

- (1) creation of RML/R2RML mapping rules related to the input data.
- (2) generation of RDF file based on the input data and the mapping rules.
- ⊳ Output

RDF

5

FOPE



Reasoning framework

- The reasoning framework is implemented using native OWL 2 RL reasoning and SPIN rules.
- Detecting semantically relevant terms

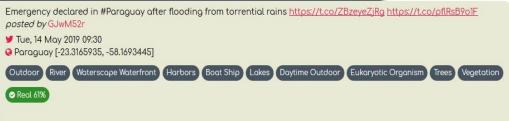
A connection among Babelfy API, BabelNet Linked data interface and WordNet interface is achieved for detecting semantically relevant terms in tweets topics.

Localisation module

Implementation of long short-term memory-based (LSTM) named-entity recognition (NER) approaches to further enrich the metadata with geolocation information.

English

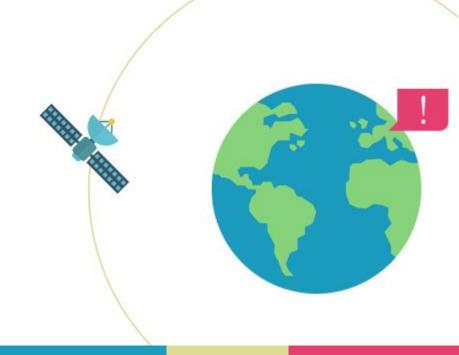
How quick-thinking mother saved family from Grenfell fire by flooding her flat Emergency declared in **#Paraguay** after flooding from torrential rains. https://t.co/Z......


Italian

Presentazione il sistema di #allertameteo della #ProtezioneCivile della città di #Gorizia Ponte Milvio fa acqua: ancora un allagamento in via Prati della Farnesina... #news #Roma

Finnish

Lumi riittää jo meidän pihaan! #Joensuu #lumi #sää


Results

- > Building a rich semantic network of interlinked data
- Extracting additional inferences using reasoning framework
- Recognizing localization information
- Replying complex semantic queries
- Supporting decision making and decision-support systems

Thanks!

Any questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 776019

