### A Deep Neural Network Slope Reduction Model on Sentinel-1 Images for Water Mask Extraction

Marios Mpakratsas, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis, Ioannis Kompatsiaris

> Information Technologies Institute Centre for Research and Technology Hellas

Presenter: Ilias Gialampoukidis E-mail: heliasgj@iti.gr

> The 40<sup>th</sup> Asian Conference on Remote Sensing – ACRS 2019 Daejeon Convention Center(DCC), Korea 14-18 October, 2019



Multimedia Knowledge & Social Media Analytics Laboratory http://mklab.iti.gr/

# Outline

- Motivation
- Related work
- Methodology
- Model Implementation
- Experiments
- Model Results Visualization
- Conclusions & Future Work
- References



# Motivation

- High applicability of Artificial Intelligence (AI) in numerous fields among them remote sensing
- Application of deep learning techniques on satellite images for automatic identification of concepts or events.
- Focus: Emergency Management applications (managerial function that copes with hazards and disasters)
  - Problem: Highly sloped areas should be indiscriminately excluded from water masks that derive from SAR imagery?
- Introduction of a water estimation method that takes into consideration the morphology of the ground and automatically generates the water bodies mask



# Related work

The effect of elevation information at the water bodies extraction task:

- (Hong et al., 2015): Problem: filtering of occluded areas tend to erase actual water reservoirs residing at high altitudes ⇒slope information performed better vs direct elevation information
- (Čotar et al., 2016): Assumption: Water bodies do not lie on steep terrain and high in the mountains ⇒ 1) Removal of geometric and radiometric errors, and airports that SAR resembles to water, 2) Use of region growing technique to retrieve missremoved and rough water pixels
- (Acharya et al., 2018): Assumption : a single water index does not perform well in a big scene with varying altitudes 
  Segmenting the test scene for specific elevations
  & use of NDVI and NDWI for detecting water



# Related work

#### Networks are being used to facilitate the execution of imagery related application:

- (Michail et al., 2018) : Target: Create accurate flood mask ⇒ Combines Mahalanobis Distance-based classification where four-dimensional classification features derived directly from the image pixels (R, G, B and Near-Infrared channel)
   Issue: Small non-flooded areas inside flooded area i.e. probable false negatives ⇒ Apply image dilation and erosion
- (Zhang et al., 2019): Issue: Difficulty in discriminating water and shadows from SAR images + noise ⇒ Use of deep neural network model for tackling noisy information:
  1) Use of 2 Multi-level Features Extraction and Fusion (MFEF) networks for generating separate score maps, 2) fusion with different weights for producing final score map



### Methodology (1)

Method: Train a Deep Neural Networks (DNN)

- Build a custom model by using a DNNs
- Train from scratch using a dataset with tuples of input data
- Experimented with two different input versions of 3 layers DNNs:
  - **VV-VH**: artificial network considering for each image pixel the tuple of the processed VV and VH polarisation bands in decibel (dBs)
  - **VV-VH-Dem**: artificial network considering for each image pixel the tuple of processed VV and VH polarisation bands (in dBs) and the elevation information
- Compared with a remote sensing approach:
  - VV or VH histogram thresholding: The deep valley of the histogram was used to separate water from non-water areas



### Methodology (2)

- Model analysis:
  - Fully connected neural network, involves 3 layers
  - Tuples of pixels values are inserted to input layer
  - Two hidden layers with 12 and 8 neurons
  - Each of the initial tuples is classified as flooded or not



Multimedia Knowledge & Social Media Analytics Laboratory http://mklab.iti.gr/

### Model Implementation

- TensorFlow <sup>1</sup>: Open source machine learning framework
- Keras<sup>2</sup>:
  - Open source neural network Python package for developing models
  - Allows easy and fast prototyping of custom neural networks
  - Runs seamlessly on CPU and GPU
  - Simplified DCNN training by easily modifying network structure
  - Transfer knowledge with pre-trained weights, freezing the weights in the imported network and eventually training the weights in the newly added layers

<sup>1</sup> <u>https://www.tensorflow.org</u>

<sup>2</sup> <u>https://keras.io/</u>



## Experiments (1)

#### Dataset:

- Input
  - Tuples of VV-VH-DEM values for each pixel
  - DEM
- Source
  - For VV-VH:
    - Sentinel-1 Satellite<sup>1</sup> (GRD-IW)
    - Ground sample distance 10 m (1 pixel = 10 m)
  - For DEM: Use of Shuttle Radar Topography Mission data at 30m Global 1 arc second V003 elaborated by NASA and NGA
- Area:
  - Captured three lakes, Maggiore, Garda and Trasimeno (March 2019)



### Experiments (2)

#### Dataset:

- Annotation
  - ~40 m tuples x 3 lakes
  - Annotation file delineating lakes & water reservoirs provided by Alto Adriatico Water Authority (AAWA)
  - Use of Bing Maps high resolution images to make corrections
- Randomly splitting the dataset including tuples of all lakes to training & validation set:
  - Size of training set: 400.000 tuples
  - Size of validation set: 120.000 tuples

<sup>1</sup> https://sentinel.esa.int/web/sentinel/missions/sentinel-1



## Experiments (3)

#### Settings:

- Tuning of set of parameters to achieve best accuracy:
  - learning rate values = 0.001, 0.01, 0.1
  - batch size value = 10,
  - optimizer functions = Adam, Stochastic Gradient Descent (SGD)
- Keep stable set of parameters:
  - epoch was set to 25
  - loss function = binary crossentropy



### **Experiments Results**

• Overall best results obtained by Adam optimizer and 0.001 learning rate

| Lakes     | Precision | Recall | Accuracy | F-score | Settings      |
|-----------|-----------|--------|----------|---------|---------------|
| Maggiore  | 98.29     | 87.84  | 93.15    | 92.77   | Adam, 0.001   |
| Maggiore  | 96.23     | 61.89  | 79.73    | 75.33   | -22.0 dB (vh) |
| Garda     | 94.57     | 93.63  | 94.13    | 94.10   | Adam, 0.001   |
| Garda     | 95.55     | 70.45  | 83.58    | 81.10   | -21.7 dB (vh) |
| Trasimeno | 93.67     | 84.61  | 89.45    | 88.91   | Adam, 0.001   |
| Trasimeno | 88.07     | 66.13  | 78.58    | 75.54   | -13.9 dB (vv) |

#### **Conclusions:**

- Accuracy improves for all cases comparing the Deep neural network model to the histogram thresholding method
- Maximum F-score of 94.10% for Garda lake with the DNN model



### Model Results Visualization

- Water masks generated with both RS and DNN methods
- DNN greatly reduces gaps in Trasimeno lake

nstitute

• Reduces the false positives at the top of the surrounding mountainous areas

http://mklab.iti.gr/



Histogram thresholding technique

- a) Maggiore
- b) Garda
- c) Trasimeno

DNN approach

# **Conclusions & Future Work**

#### **Conclusions:**

- Combining imagery with elevation data increases performance:
  - Reducing the false positives that are caused of the steep mountain slopes
- Lower values of learning ration ⇒ better accuracy
- Best results with Adam optimizer and learning rate of 0.001

#### Future work:

- Train a DCNN like VGG16, VGG19, ResNet50:
  - Using transfer learning of pretrained-models and train last layers of network
  - Train from scratch (full training) using large amount of annotated data
- Evaluation of alternative ways for fine-tuning pre-trained networks



## References

- S. Hong, H. Jang, N. Kim and H.-G. Sohn. Water area extraction using radarsat sar imagery combined with landsat imagery and terrain information. Sensors, 15(3):6652–6667, 2015
- K. Čotar, K. Oštir and Ž. Kokalj. Radar satellite imagery and automatic detection of water bodies. *Geodetski glasnik*, *50*(47), 5-15, 2016
- T. Acharya, A. Subedi and D. Lee. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. *Sensors*, *18*(8), 2580, 2018
- E. Michail, A. Moumtzidou, I. Gialampoukidis, K. Avgerinakis, M. G. Scarpino, S. Vrochidis, G. Vingione, I.Kompatsiaris, K. Labbassi, M. Menenti and F.-E. Elghandour. Testing a flood mask correction method of optical satellite imagery over irrigated agricultural areas. In 2nd Mapping Water Bodies from Space Conference (MWBS2018), 2018
- P. Zhang, L. Chen, Z. Li, J. Xing, X. Xing and Z. Yuan. Automatic extraction of water and shadow from sar images based on a multi-resolution dense encoder and decoder network. Sensors, 19(16):3576, 2019
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.1



# Thank you!

Supported by the project EOPEN (H2020-776019) funded by the European Commission



Multimedia Knowledge & Social Media Analytics Laboratory http://mklab.iti.gr/